Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The division of focal plane polarimeters is fabricated out of nanowire polarization filters attached to the surface of a focal plane array. Due to limitations in the manufacturing process, the transmissivity of each nanowire polarization filter is different, resulting in a combination of inhomogeneities in transmittance and detector response, and which also yields the problem of polarization imaging uniformity, a more complicated method than traditional intensity imaging. This study presents a brand new nonuniformity correction method for solving the correction inaccuracies in the traditional method. The method corrected the polarization filter transmittance with detector gain based on a new method for calculating the degree of linear polarization (DoLP). This paper includes the theoretical derivation, experimental testing, and numerical simulation. In this simulation environment, the DoLP value was accurately calculated.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.57.004992DOI Listing

Publication Analysis

Top Keywords

focal plane
12
division focal
8
plane polarimeters
8
nanowire polarization
8
polarization filter
8
transmittance detector
8
polarization
5
method
5
calibration method
4
method division
4

Similar Publications

Recent advances in two-dimensional (2D) magnetic materials have promoted significant progress in low-dimensional magnetism and its technological applications. Among them, atomically thin chromium trihalides (CrX with X = Cl, Br, and I) are among the most studied 2D magnets due to their unique magnetic properties. In this work, we employ density functional theory calculations to investigate the mechanical and electronic properties of CrX monolayers in the presence of in-plane uniaxial strain.

View Article and Find Full Text PDF

Background: Diabetic foot ulcers (DFU) are a prevalent complication of diabetes, leading to significant morbidity, mortality, and amputation rates. Chronic non-healing DFU often result from peripheral neuropathy, microvascular issues, and infection, with poor blood and oxygen supply being critical factors in delayed healing. The development of new treatments to promote blood supply and accelerate ulcer healing is a significant area of research for DFU management.

View Article and Find Full Text PDF

Quantum imaging with spatially entangled photons offers advantages such as enhanced spatial resolution, robustness against noise, and counterintuitive phenomena, while a biphoton spatial aberration generally degrades its performance. Biphoton aberration correction has been achieved by using classical beams to detect the aberration source or scanning the correction phase on biphotons if the source is unreachable. Here, a new method named position-correlated biphoton Shack-Hartmann wavefront sensing is introduced, where the phase pattern added on photon pairs with a strong position correlation is reconstructed from their position centroid distribution at the back focal plane of a microlens array.

View Article and Find Full Text PDF

Using angle-resolved photoemission spectroscopy (ARPES) with spin resolution, scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) methods, we study the electronic structure of graphene-covered and bare Au/Co(0001) systems and reveal intriguing features, arising from the ferrimagnetic order in graphene and the underlying gold monolayer. In particular, a spin-polarized Dirac-cone-like state, intrinsically related to the induced magnetization of Au, was discovered at point. We have obtained a good agreement between experiment and theory for bare and graphene-covered Au/Co(0001) and have proven that both Au ferrimagnetism and the Dirac-cone-like band are intimately linked to the triangular loop dislocations present at the Au/Co interface.

View Article and Find Full Text PDF

Cation Dehydration by Surface-Grafted Phenyl Groups for Enhanced C Production in Cu-Catalyzed Electrochemical CO Reduction.

J Am Chem Soc

September 2025

Laboratory of Inorganic Synthesis and Catalysis (LSCI), Institute of Chemical Sciences and Engineering, École Polytechnique Fédéralede Lausanne (EPFL), Lausanne 1015, Switzerland.

The challenge to produce multicarbon (C) products in high current densities in the electrochemical reduction of carbon dioxide (CORR) has motivated intense research. However, the ability of solvated cations to tune and activate water for C production in the CORR has been overlooked. In this study, we report the incorporation of a covalently grown layer of functionalized phenyl groups on the Cu surface that leads to a 7-fold increase in ethylene production (to -530 mA cm) and a 6-fold increase in C products (to -760 mA cm).

View Article and Find Full Text PDF