98%
921
2 minutes
20
Serotonergic mechanisms hosted by raphe nuclei have important roles in affiliative and agonistic behaviors but the separate roles of the two nuclei are poorly understood. Here we studied the roles of the dorsal (DR) and median raphe region (MRR) in aggression by optogenetically stimulating the two nuclei. Mice received three 3 min-long stimulations, which were separated by non-stimulation periods of 3 min. The stimulation of the MRR decreased aggression in a phasic-like manner. Effects were rapidly expressed during stimulations, and vanished similarly fast when stimulations were halted. No carryover effects were observed in the subsequent three trials performed at 2-day intervals. No effects on social behaviors were observed. By contrast, DR stimulation rapidly and tonically promoted social behaviors: effects were present during both the stimulation and non-stimulation periods of intermittent stimulations. Aggressive behaviors were marginally diminished by acute DR stimulations, but repeated stimulations administered over 8 days considerably decreased aggression even in the absence of concurrent stimulations, indicating the emergence of carryover effects. No such effects were observed in the case of social behaviors. We also investigated stimulation-induced neurotransmitter release in the prefrontal cortex, a major site of aggression control. MRR stimulation rapidly but transiently increased serotonin release, and induced a lasting increase in glutamate levels. DR stimulation had no effect on glutamate, but elicited a lasting increase of serotonin release. Prefrontal serotonin levels remained elevated for at least 2 h subsequent to DR stimulations. The stimulation of both nuclei increased GABA release rapidly and transiently. Thus, differential behavioral effects of the two raphe nuclei were associated with differences in their neurotransmission profiles. These findings reveal a surprisingly strong behavioral task division between the two raphe nuclei, which was associated with a nucleus-specific neurotransmitter release in the prefrontal cortex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082963 | PMC |
http://dx.doi.org/10.3389/fnbeh.2018.00163 | DOI Listing |
Zool Res
September 2025
Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science, Nanyang Normal University, Nanyang, Henan 473061, China.
Social hierarchies are central to the organizational structure of group-living species, shaping individual physiology, behavior, and social interactions. Dopaminergic (DA) systems, particularly within the ventral tegmental area (VTA) and dorsal raphe nucleus (DR), have been linked to motivation and competitive behaviors, yet their region-specific contributions to social dominance remain insufficiently defined. This study investigated the role of VTA and DR DA neurons in regulating social dominance in sexually naïve male C57BL/6J mice.
View Article and Find Full Text PDFPsychiatry Res Neuroimaging
August 2025
Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany.
The neural correlates of treatment-resistant depression (TRD) are not fully elucidated. Brainstem functional connectivity (FC) in TRD has rarely been investigated, despite the assumed role of several brainstem nuclei in depression. 23 patients and 23 sex- and age-matched healthy controls underwent resting-state functional MRI.
View Article and Find Full Text PDFToxicol Res (Camb)
August 2025
Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
Lipopolysaccharide (LPS; a bacterial endotoxin) treatment causes acute inflammatory conditions. Acute inflammation causes the brain to activate neurons in some brain nuclei known as circumventricular organs. The c-Fos immunoreaction could be used to assess this neural activity.
View Article and Find Full Text PDFJ Comp Neurol
September 2025
Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, USA.
The dorsal midline thalamus (DMT) is composed of the paraventricular (PV) and paratenial (PT) nuclei. While the anatomical and functional properties of PV are well-established, PT has remarkably received very little attention-even though the efferent projections of PV and PT are very similar. Using a combination of retrograde tracing and immunohistochemistry, we examined the anatomical inputs to PT and compared them with those to the anterior and posterior PV and to the anterodorsal nucleus of the thalamus.
View Article and Find Full Text PDFZhen Ci Yan Jiu
August 2025
The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China.
Objectives: This study aims to investigate the intervention effects of electroacupuncture on neuropathic pain and anxiety-like behavior, and to explore the underlying mechanisms of the DRN-BLA (dorsal raphe nucleus serotoninergic - basolateral amygdala) neural circuit.
Methods: Male C57BL/6J mice were selected, and a neuropathic pain model was established through spared nerve injury (SNI) surgery. Electroacupuncture (100 Hz, 0.