Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pygmy perches (Percichthyidae) are a group of poorly dispersing freshwater fishes that have a puzzling biogeographic disjunction across southern Australia. Current understanding of pygmy perch phylogenetic relationships suggests past east-west migrations across a vast expanse of now arid habitat in central southern Australia, a region lacking contemporary rivers. Pygmy perches also represent a threatened group with confusing taxonomy and potentially cryptic species diversity. Here, we present the first study of the evolutionary history of pygmy perches based on genome-wide information. Data from 13 991 ddRAD loci and a concatenated sequence of 1 075 734 bp were generated for all currently described and potentially cryptic species. Phylogenetic relationships, biogeographic history and cryptic diversification were inferred using a framework that combines phylogenomics, species delimitation and estimation of divergence times. The genome-wide phylogeny clarified the biogeographic history of pygmy perches, demonstrating multiple east-west events of divergence within the group across the Australian continent. These results also resolved discordance between nuclear and mitochondrial data from a previous study. In addition, we propose three cryptic species within a southwestern species complex. The finding of potentially new species demonstrates that pygmy perches may be even more susceptible to ecological and demographic threats than previously thought. Our results have substantial implications for improving conservation legislation of pygmy perch lineages, especially in southwestern Western Australia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030323PMC
http://dx.doi.org/10.1098/rsos.172125DOI Listing

Publication Analysis

Top Keywords

pygmy perches
24
cryptic species
12
pygmy
8
southern australia
8
pygmy perch
8
phylogenetic relationships
8
history pygmy
8
biogeographic history
8
perches
6
species
6

Similar Publications

Anthropogenic climate change is forecast to drive regional climate disruption and instability across the globe. These impacts are likely to be exacerbated within biodiversity hotspots, both due to the greater potential for species loss but also to the possibility that endemic lineages might not have experienced significant climatic variation in the past, limiting their evolutionary potential to respond to rapid climate change. We assessed the role of climatic stability on the accumulation and persistence of lineages in an obligate freshwater fish group endemic to the southwest Western Australia (SWWA) biodiversity hotspot.

View Article and Find Full Text PDF

Background: Understanding how species biology may facilitate resilience to climate change remains a critical factor in detecting and protecting species at risk of extinction. Many studies have focused on the role of particular ecological traits in driving species responses, but less so on demographic history and levels of standing genetic variation. Additionally, spatial variation in the interaction of demographic and adaptive factors may further complicate prediction of species responses to environmental change.

View Article and Find Full Text PDF

Longitudinal monitoring of neutral and adaptive genomic diversity in a reintroduction.

Conserv Biol

August 2022

Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.

Restoration programs in the form of ex-situ breeding combined with reintroductions are becoming critical to counteract demographic declines and species losses. Such programs are increasingly using genetic management to improve conservation outcomes. However, the lack of long-term monitoring of genetic indicators following reintroduction prevents assessments of the trajectory and persistence of reintroduced populations.

View Article and Find Full Text PDF

Phylogeny-based conservation priorities for Australian freshwater fishes.

Conserv Biol

April 2022

Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.

Conservation scientists are increasingly interested in the question of how extinction prunes the tree of life. This question is particularly important for Australian freshwater fishes because there is a broad mix of ∼300 old and young species, many of which are severely threatened. We used a complete species-level phylogeny of Australian freshwater fishes to examine phylogenetic nonrandomness of extinction risk.

View Article and Find Full Text PDF

While the influence of Pleistocene climatic changes on divergence and speciation has been well-documented across the globe, complex spatial interactions between hydrology and eustatics over longer timeframes may also determine species evolutionary trajectories. Within the Australian continent, glacial cycles were not associated with changes in ice cover and instead largely resulted in fluctuations from moist to arid conditions across the landscape. We investigated the role of hydrological and coastal topographic changes brought about by Plio-Pleistocene climatic changes on the biogeographic history of a small Australian freshwater fish, the southern pygmy perch Nannoperca australis.

View Article and Find Full Text PDF