CaMKIIδ interacts directly with IKKβ and modulates NF-κB signalling in adult cardiac fibroblasts.

Cell Signal

Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Hamnett building 161, Cathedral Street, Glasgow G4 0RE, UK. Electronic address:

Published: November 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Calcium/calmodulin dependent protein kinase IIδ (CaMKIIδ) acts as a molecular switch regulating cardiovascular Ca handling and contractility in health and disease. Activation of CaMKIIδ is also known to regulate cardiovascular inflammation and is reported to be required for pro-inflammatory NF-κB signalling. In this study the aim was to characterise how CaMKIIδ interacts with and modulates NF-κB signalling and whether this interaction exists in non-contractile cells of the heart. Recombinant or purified CaMKIIδ and the individual inhibitory -κB kinase (IKK) proteins of the NF-κB signalling pathway were used in autoradiography and Surface Plasmon Resonance (SPR) to explore potential interactions between both components. Primary adult rat cardiac fibroblasts were then used to study the effects of selective CaMKII inhibition on pharmacologically-induced NF-κB activation as well as interaction between CaMKII and specific IKK isoforms in a cardiac cellular setting. Autoradiography analysis suggested that CaMKIIδ phosphorylated IKKβ but not IKKα. SPR analysis further supported a direct interaction between CaMKIIδ and IKKβ but not between CaMKIIδ and IKKα or IKKγ. CaMKIIδ regulation of IκΒα degradation was explored in adult cardiac fibroblasts exposed to pharmacological stimulation. Cells were stimulated with agonist in the presence or absence of a CaMKII inhibitor, autocamtide inhibitory peptide (AIP). Selective inhibition of CaMKII resulted in reduced NF-κB activation, as measured by agonist-stimulated IκBα degradation. Importantly, and in agreement with the recombinant protein work, an interaction between CaMKII and IKKβ was evident following Proximity Ligation Assays in adult cardiac fibroblasts. This study provides new evidence supporting direct interaction between CaMKIIδ and IKKβ in pro-inflammatory signalling in cardiac fibroblasts and could represent a feature that may be exploited for therapeutic benefit.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2018.07.008DOI Listing

Publication Analysis

Top Keywords

cardiac fibroblasts
20
nf-κb signalling
16
adult cardiac
12
camkiiδ
10
camkiiδ interacts
8
modulates nf-κb
8
fibroblasts study
8
nf-κb activation
8
interaction camkii
8
direct interaction
8

Similar Publications

Durotaxis is a driver and potential therapeutic target in lung fibrosis and metastatic pancreatic cancer.

Nat Cell Biol

September 2025

Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Durotaxis, cell migration along stiffness gradients, is linked to embryonic development, tissue repair and disease. Despite solid in vitro evidence, its role in vivo remains largely speculative. Here we demonstrate that durotaxis actively drives disease progression in vivo in mouse models of lung fibrosis and metastatic pancreatic cancer.

View Article and Find Full Text PDF

Background: High % of low-voltage area (LVA), a surrogate of scar, is associated with atrial fibrillation (AF) recurrence after pulmonary vein isolation (PVI). Noninvasive biomarkers of LVA are a medical need for PVI decision.

Objective: We aimed to identify the proteome profile of plasma extracellular vesicles (EVs) associated with high % LVA, their cellular origin, and their regulation by hyperglycemia.

View Article and Find Full Text PDF

Diabetic cardiomyopathy (DCM) is a progressive heart disorder associated with diabetes mellitus, leading to structural and functional cardiac abnormalities. The mechanisms responsible include renin-angiotensin-aldosterone (RAAS) activation, inflammation, apoptosis, and metabolic disturbances. Despite well-established epidemiological links, treatments for DCM are elusive.

View Article and Find Full Text PDF

Aortic valve stenosis is a progressive and increasingly prevalent disease in older adults, with no approved pharmacologic therapies to prevent or slow its progression. Although genetic risk factors have been identified, the contribution of epigenetic regulation remains poorly understood. Here, we demonstrated that histone deacetylase 3 (HDAC3) maintains aortic valve structure by suppressing mitochondrial biogenesis and preserving extracellular matrix integrity in valvular interstitial fibroblasts.

View Article and Find Full Text PDF

Cardiovascular diseases are increasingly recognized as chronic disorders driven by a complex interplay between inflammation and fibrosis. In this review, we elucidate emerging mechanisms that govern the transition from acute inflammation to pathological fibrosis, with particular focus on cellular crosstalk between neutrophils, macrophages, fibroblasts, and myofibroblasts. We explore how dysregulated immune responses and extracellular matrix (ECM) remodeling sustain a pathogenic feedback loop, promoting myocardial stiffening and adverse cardiac remodeling.

View Article and Find Full Text PDF