98%
921
2 minutes
20
In this paper, we study the control problems of distributed parameter systems, and discuss the limitations of traditional control methods. In recent years, social factors have gradually become an essential parameter of system modeling. For complex distributed parameter systems, the accurate modeling becomes difficult. With the rapid development of the network and the technology of big data and cloud computing, based on the advanced control theory of large-scale computing, we introduce the idea of parallel control to the control of distributed parameter systems. Parallel control is a method to accomplish tasks through the interaction of virtual and actual. Its core is to model the complex distributed parameter system on artificial society or artificial system, then analyze and evaluate it by computational experiment, and finally control and manage the distributed parameter system by parallel execution. Data-driven control and computational control are used in this method, which is a control idea that adapts to the rapid development of society.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2018.2849569 | DOI Listing |
Environ Monit Assess
September 2025
Department of Geosciences, University of Bremen, Bremen, Germany.
Surveillance monitoring of shallow groundwater revealed that redox conditions can vary on a small scale. Therefore, the aim of this study was to categorize redox conditions in the groundwater of Lower Saxony, Germany, and to analyze the spatial distribution and trends of parameters related to redox conditions during surveillance monitoring from 1957 to 2015 in Lower Saxony, Germany. Methodically, trends were considered by applying the Mann-Kendall test and redox conditions of groundwater were classified according to the scheme of Jurgens et al.
View Article and Find Full Text PDFBull Math Biol
September 2025
Department of Mathematics, Siena University, 515 Loudon Road, Loudonville, NY, 12211, USA.
Autonomous differential equation compartmental models hold broad utility in epidemiology and public health. However, these models typically cannot account explicitly for myriad factors that affect the trajectory of infectious diseases, with seasonal variations in host behavior and environmental conditions as noteworthy examples. Fortunately, using non-autonomous differential equation compartmental models can mitigate some of these deficiencies, as the inclusion of time-varying parameters can account for temporally varying factors.
View Article and Find Full Text PDFMetab Brain Dis
September 2025
Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, Gifu, 1-1 Yanagido, 501-1194, Japan.
Identifying the risk of overt hepatic encephalopathy (OHE) in geriatric patients with cirrhosis remains challenging. This study aimed to investigate the independent factors for OHE development in geriatric cirrhosis and to establish a simple scoring model to identify individuals at risk for OHE. We conducted a retrospective review of geriatric patients with cirrhosis aged ≥ 80 years who were admitted between April 2006 and November 2022.
View Article and Find Full Text PDFJ Acoust Soc Am
September 2025
College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China.
The single-difference positioning method could eliminate the systematic error of long periods, which is one of the major factors affecting the seafloor geodetic acoustic positioning accuracy. Due to the poor observation geometry in short observation time, there is collinearity in the coefficient matrix. Therefore, a small observation error may lead to a large error in the least square solution, which is the ill-posed problem of single-difference positioning.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
September 2025
Certara UK Ltd., Level 2 Acero, 1 Concourse Way, Sheffield, UK.
Therapeutic oligonucleotides (TOs) represent an emerging modality, which offers a promising alternative treatment option, particularly for intracellular targets. The two types of TOs, antisense oligonucleotides (ASO) and small interfering RNAs (siRNAs), distribute highly into tissues, especially into the liver and the kidneys. However, molecular processes at the cellular level such as the uptake into the cell, endosomal escape, binding to the target mRNA, and redistribution back to the systemic circulation are not well characterized because experimental data and assays are lacking.
View Article and Find Full Text PDF