Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neuropsychiatric disorders overlap in symptoms and share genetic risk factors, challenging their current classification into distinct diagnostic categories. Novel cross-disorder approaches are needed to improve our understanding of the heterogeneous nature of neuropsychiatric diseases and overcome existing bottlenecks in their diagnosis and treatment. Here we employ high-content multi-parameter phospho-specific flow cytometry, fluorescent cell barcoding and automated sample preparation to characterize ex vivo signaling network responses (n = 1764) measured at the single-cell level in B and T lymphocytes across patients diagnosed with four major neuropsychiatric disorders: autism spectrum condition (ASC), bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ; n = 25 each), alongside matched healthy controls (n = 100). We identified 25 nodes (individual cell subtype-epitope-ligand combinations) significantly altered relative to the control group, with variable overlap between different neuropsychiatric diseases and heterogeneously expressed at the level of each individual patient. Reconstruction of the diagnostic categories from the altered nodes revealed an overlapping neuropsychiatric spectrum extending from MDD on one end, through BD and SCZ, to ASC on the other end. Network analysis showed that although the pathway structure of the epitopes was broadly preserved across the clinical groups, there were multiple discrete alterations in network connectivity, such as disconnections within the antigen/integrin receptor pathway and increased negative regulation within the Akt1 pathway in CD4 T cells from ASC and SCZ patients, in addition to increased correlation of Stat1 (pY701) and Stat5 (pY694) responses in B cells from BD and MDD patients. Our results support the "dimensional" approach to neuropsychiatric disease classification and suggest potential novel drug targets along the neuropsychiatric spectrum.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-018-0123-4DOI Listing

Publication Analysis

Top Keywords

neuropsychiatric spectrum
12
neuropsychiatric disorders
8
diagnostic categories
8
neuropsychiatric diseases
8
neuropsychiatric
7
exploring neuropsychiatric
4
spectrum
4
spectrum high-content
4
high-content functional
4
functional analysis
4

Similar Publications

Recursive splice sites are rare motifs postulated to facilitate splicing across massive introns and shape isoform diversity, especially for long, brain-expressed genes. The necessity of this unique mechanism remains unsubstantiated, as does the role of recursive splicing (RS) in human disease. From analyses of rare copy number variants (CNVs) from almost one million individuals, we previously identified large, heterozygous deletions eliminating an RS site (RS1) in the first intron of that conferred substantial risk for attention deficit hyperactivity disorder (ADHD) and other neurobehavioral traits.

View Article and Find Full Text PDF

Background: Methamphetamine use disorder (MUD) is linked to a variety of cognitive and neuropsychiatric deficits. One of the illegal substances that is most frequently abused is cannabis. The general consensus is that both recreational cannabis and methamphetamine use result in a wide spectrum of severe cognitive impairments, although there have been questions raised regarding conclusions derived from published material.

View Article and Find Full Text PDF

The immune interactions within the gut-brain axis represent a critical etiological factor in psychiatric disorders. The gut microbiota and their metabolites serve as biological mediators that regulate neuroimmune activation and suppression in the central nervous system (CNS). During intestinal immune activation, pro-inflammatory cytokines (, IL-6, TNF-α) propagate to the CNS compromised blood-brain barrier (BBB) integrity or vagal afferent fibers, disrupting neurotransmitter metabolism and inducing microglial hyperactivation, thereby exacerbating neuroinflammation.

View Article and Find Full Text PDF

Introduction: The microbiota-gut-brain axis (MGBA), a complex two-way connection between the gut microbiota and the brain, has become a key regulator of neurological and neuropsychiatric disorders. Neurological disorders and gut microbiota dysbiosis are linked to these diseases. Changes in gut microbiota can lead to neurotransmitter imbalances, oxidative stress, and neuroinflammation.

View Article and Find Full Text PDF

Hepatic failure is a severe condition marked by the progressive or sudden loss of liver function, broadly categorized into acute liver failure (ALF), which develops within days to weeks, and chronic liver failure (CLF), which evolves over months or years. Both forms can lead to serious complications such as jaundice, impaired detoxification, portal hypertension, ascites, multi-organ dysfunction, and coagulation disorders. A significant neuropsychiatric consequence of liver failure is hepatic encephalopathy (HE), a spectrum of cognitive, motor, and behavioral abnormalities.

View Article and Find Full Text PDF