Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The present work highlights the effect of urea on solvation dynamics and the rotational relaxation of Coumarin 480 (C-480) in the Stern layer of aqueous micelles of cationic gemini surfactants, 12-4(OH) -12 ( = 0, 1, 2). UV-visible absorption, steady-state fluorescence and fluorescence anisotropy, time-resolved fluorescence and fluorescence anisotropy, and dynamic light scattering measurements have been carried out for this study. The formation of micelles becomes disfavored in the presence of urea at high concentration. Solvation dynamics is bimodal in nature with fast solvation as a major component. The average solvation time increases, reaches a maximum, and then decreases with increasing concentration of urea because the degree of counterion dissociation also follows the same order with the addition of urea in the micellar solution. With increased degree of counterion dissociation, the extent of clustering of water molecules is increased, resulting in slower solvation process. The -OH group present in the spacer group of gemini surfactant controls the rate of solvation by shielding the water molecules from the probe molecules forming hydrogen bond. The microviscosity of micelles is decreased with increasing concentration of urea, as a result of which the rotational relaxation process becomes faster. In the presence of the -OH group in the spacer group, the microviscosity of micelles is enhanced, resulting in longer rotational relaxation time. Rotational relaxation process is bimodal in nature with the major contribution from the fast component to the fluorescence depolarization. Slow rotational relaxation is mainly due to the lateral diffusion of C-480 molecules along the surface of the micelle. The tumbling motion of the micelle as a whole is much slower than the lateral diffusion of C-480. Wobbling motion of C-480 becomes faster with increasing concentration of urea as a result of decreased microviscosity of micelles. The alignment of C-480 molecules in micelles might change with changing microviscosity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6044790PMC
http://dx.doi.org/10.1021/acsomega.7b01747DOI Listing

Publication Analysis

Top Keywords

rotational relaxation
24
solvation dynamics
12
increasing concentration
12
concentration urea
12
microviscosity micelles
12
urea solvation
8
dynamics rotational
8
relaxation coumarin
8
coumarin 480
8
aqueous micelles
8

Similar Publications

Photophysical studies on the interaction of small molecules with various forms of nucleic acids are attracting attention nowadays in order to delineate the molecular level mechanism of various biological processes occurring in vivo. Herein, we employed vivid steady-state and time-resolved spectroscopic techniques to elucidate the detailed characterization of the binding interaction of a biologically active cationic dye thioflavin T (ThT) with double and triple helical forms of RNA - A.U duplex and U.

View Article and Find Full Text PDF

Distortions in the local symmetry around Ln(III) ions in SMMs significantly impacts slow magnetic relaxation by introducing transverse crystal field parameters that enhance quantum tunnelling of the magnetisation (QTM). Minimising these distortions, often using macrocyclic or sterically hindered ligands, or by tuning intermolecular interactions, is essential for suppressing QTM. A less-explored strategy involves aligning the molecular symmetry elements within the crystal lattice to generate a high-symmetry crystal lattice with symmetry enforced bond angles and lengths.

View Article and Find Full Text PDF

BODIPY-functionalized host molecules have been used as effective visible-light photosensitizers in the conversion of α-terpinene to ascaridole in the presence of molecular oxygen. Host-guest interactions enhance the effective local concentration of the substrate and singlet oxygen generated by the photosensitizing host. This results in up to a 28-fold increase in the rate of conversion depending on the host employed.

View Article and Find Full Text PDF

Passive neck stiffness and range of motion for males and females from early to late adulthood.

Spine J

August 2025

School of Electrical and Mechanical Engineering, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, SA, 5000. Electronic address:

Background Context: Understanding human passive neck range of motion (ROM) and stiffness, and their association with age and sex, can be beneficial for clinical assessment, surrogate and computational modelling.

Purpose: To assess passive head-neck ROM and stiffness, and to investigate association with age and sex, in flexion, extension, left and right lateral bending, and axial rotation.

Study Design/setting: In-vivo human participant testing.

View Article and Find Full Text PDF

In this Letter, we report phase-dependent excited-state relaxation pathways and fluorescence mechanisms of the 1-NH molecule using quantum chemical simulations. In the liquid phase, the synergistic coupling between excited-state intramolecular proton transfer (ESIPT) and twisted intramolecular charge transfer (TICT) facilitates nonradiative decay through a conical intersection (CI) channel, leading to the quenching of Keto* fluorescence. Conversely, in the solid phase, restricted molecular rotation blocks the CI channel and promotes barrierless ESIPT, yielding strong Keto* emission in the near-infrared (NIR) region.

View Article and Find Full Text PDF