Resting Motor Threshold, MEP and TEP Variability During Daytime.

Brain Topogr

Department of Clinical Neurophysiology, Technical Medical Centre, University of Twente, Carré CR 3.623, P.O. 217, 7500 AE, Enschede, The Netherlands.

Published: January 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Humans show a variation in physiological processes during the day. To reliably assess (changes in) cortical excitability with transcranial magnetic stimulation (TMS), it is relevant to know the natural variation in TMS readouts during the day. In case of significant daytime variations, this should be taken into account when scheduling (follow-up) measurements. This study aims to evaluate the influence of the time of day on the resting motor threshold (RMT), motor evoked potential (MEP) and TMS evoked potential (TEP) in healthy controls. TMS-EMG-EEG was recorded in 16 healthy subjects. At both motor cortices, we administered 75 pulses at an intensity of 110% RMT. Subjects were stimulated during five sessions in one day (8:00 AM, 10:30 AM, 1:00 PM, 3:30 PM and 6:00 PM) while keeping the stimulation intensity constant. We compared the TEP waveforms between the five sessions with a cluster-based permutation analysis, and the RMT and MEP amplitude with rmANOVA. In general there were no significant differences between the five sessions in the RMT, MEP amplitude or TEP. Only for the left side, N100 amplitude was larger at 3:30 PM than 10:30 AM. The standard deviation of the P30 and N100 amplitude was significantly higher between subjects within one session than within single subjects during the day. The TEP is highly reproducible during the day, with a low intra-individual variation compared to the inter-individual variation. In addition, we found no significant variation of the RMT and MEP amplitude between multiple sessions on one day.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326963PMC
http://dx.doi.org/10.1007/s10548-018-0662-7DOI Listing

Publication Analysis

Top Keywords

mep amplitude
12
resting motor
8
motor threshold
8
evoked potential
8
sessions one day
8
rmt mep
8
n100 amplitude
8
mep
5
tep
5
variation
5

Similar Publications

Rostro-caudal TMS mapping of immediate transcranial evoked potentials reveals a pericentral crescendo-decrescendo pattern.

Neuroimage

September 2025

Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark, Kettegård Allé 30, 2650 Hvidovre, Denmark; Institute of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N,

Background: We recently demonstrated that single-pulse TMS of the primary sensorimotor hand area (SM1) elicits an immediate transcranial evoked potential (iTEP). This iTEP response appears within 2-8 ms post-TMS, featuring high-frequency peaks superimposed on a slow positive wave. Here, we used a linear TMS-EEG mapping approach to characterize the rostro-caudal iTEP expression and compared it to that of motor-evoked potentials (MEPs).

View Article and Find Full Text PDF

Multidimensional Motor Evoked Potentials (MultiMEP): Digging up buried information from single trials.

Brain Stimul

September 2025

Department of Philosophy, University of Milan, Milan, via Festa Del Perdono, 7, 20122, Italy; Cognition in Action (CIA) Unit, PHILAB, University of Milan, Via Santa Sofia, 9, 20122, Italy. Electronic address:

Background: To investigate covert motor processes, transcranial magnetic stimulation (TMS) studies often use motor-evoked potentials (MEPs) as a proxy for inferring the state of motor representations. Typically, these studies test motor representations of actions that can be produced by the isolated contraction of one muscle, limiting both the number of recorded muscles and the complexity of tested actions. Furthermore, univariate analyses treat MEPs from different muscles as independent, overlooking potentially meaningful intermuscular relationships encoded in MEPs amplitude patterns at the single-trial level.

View Article and Find Full Text PDF

Hardware-enabled low latency rhythmic brain state tracking for brain stimulation applications.

Neuroimage

September 2025

Center for Bioelectric Interfaces, Higher School of Economics, Moscow, Russia; LLC "Life Improvement by Future Technologies Center", Moscow, Russia; AIRI, Artificial Intelligence Research Institute, Moscow, Russia. Electronic address:

Objective: Upcoming neuroscientific research will require bidirectional and context dependent interaction with nervous tissue. To facilitate the future neuroscientific discoveries we have created HarPULL, a genuinely real-time system for tracking oscillatory brain state.

Approach: The HarPULL technology ensures reliable, accurate and affordable real-time phase and amplitude tracking based on the state-space estimation framework operationalized by Kalman filtering.

View Article and Find Full Text PDF

Objective: Effective deep brain stimulation (DBS) treatment for Parkinson's disease requires careful adjustment of stimulation parameters and targeting to avoid motor side effects caused by activation of the internal capsule. Currently, patients must self-report side effects during device programming and implantation surgery - a challenging and subjective process that could lead to suboptimal therapy or exacerbate the time needed to optimize treatment. Motor evoked potentials (mEP), the use of electromyography to record DBS-induced muscle activation, offer a promising biomarker for objective motor side effect detection.

View Article and Find Full Text PDF

Complexity of neural outputs elicited by transcranial magnetic stimulation.

J Neurophysiol

September 2025

Defitech Chair of Clinical Neuroengineering, Neuro X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland.

Complex neural activity of the motor cortex is posited to serve as the foundation for a large repertoire of activation patterns crucial for executing movements. As transcranial magnetic stimulation (TMS) predominantly activates monosynaptic fast-conducting corticospinal projections, which are involved in dexterous movement control, complexity of neural outputs elicited by TMS may reflect an underlying repertoire of activation patterns crucial for executing dexterous movements. We proposed to quantify dimensionality of multi-muscle motor-evoked potentials (MEPs) through dimensionality reduction as an integrated measure to reflect complexity of neural outputs elicited by TMS.

View Article and Find Full Text PDF