Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biodiversity monitoring is the standard for environmental impact assessment of anthropogenic activities. Several recent studies showed that high-throughput amplicon sequencing of environmental DNA (eDNA metabarcoding) could overcome many limitations of the traditional morphotaxonomy-based bioassessment. Recently, we demonstrated that supervised machine learning (SML) can be used to predict accurate biotic indices values from eDNA metabarcoding data, regardless of the taxonomic affiliation of the sequences. However, it is unknown to which extent the accuracy of such models depends on taxonomic resolution of molecular markers or how SML compares with metabarcoding approaches targeting well-established bioindicator species. In this study, we address these issues by training predictive models upon five different ribosomal bacterial and eukaryotic markers and measuring their performance to assess the environmental impact of marine aquaculture on independent data sets. Our results show that all tested markers are yielding accurate predictive models and that they all outperform the assessment relying solely on taxonomically assigned sequences. Remarkably, we did not find any significant difference in the performance of the models built using universal eukaryotic or prokaryotic markers. Using any molecular marker with a taxonomic range broad enough to comprise different potential bioindicator taxa, SML approach can overcome the limits of taxonomy-based eDNA bioassessment.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1755-0998.12926DOI Listing

Publication Analysis

Top Keywords

supervised machine
8
machine learning
8
environmental dna
8
environmental impact
8
edna metabarcoding
8
predictive models
8
learning outperforms
4
outperforms taxonomy-based
4
environmental
4
taxonomy-based environmental
4

Similar Publications

Objectives: On-site normothermic machine perfusion of the liver may require hepatic arterial reconstruction. The effect of arterial reconstruction on the deve-lopment of primary ischemic cholangiopathy has not been fully elucidated in liver transplants with organs donated after circulatory death. The aim of this study was to evaluate the effect of normothermic machine perfusion with arterial reconstruction at the onset of ischemic cholangiopathy in liver transplants with organs donated after circulatory death.

View Article and Find Full Text PDF

Prediction of in-hospital mortality in patients with acute myocardial infarction following primary percutaneous coronary intervention: A machine learning approach.

Heart Lung

September 2025

Department of Nursing, College of Medicine, National Cheng Kung University, No. 1, University Road, East District, Tainan City 70101, Taiwan. Electronic address:

Background: In-hospital mortality in patients with acute myocardial infarction (AMI) following primary percutaneous coronary intervention (pPCI) remains a significant concern. Developing a predictive model of in-hospital mortality is crucial for identifying high-risk patients, guiding clinical decisions, and preventing in-hospital mortality. Machine learning (ML) may analyze patterns in large datasets and provide accurate predictions of in-hospital mortality in AMI patients following pPCI.

View Article and Find Full Text PDF

Capturing the dynamic changes in patients' internal states as they approach death due to fatal diseases remains a major challenge in understanding individual pathologies and improving end-of-life care. However, existing methods primarily focus on specific test values or organ dysfunction markers, failing to provide a comprehensive view of the evolving internal state preceding death. To address this, we analyzed electronic health record (EHR) data from a single institution, including 8,976 cancer patients and 77 laboratory parameters, by constructing continuous mortality prediction models based on gradient-boosting decision trees and leveraging them for temporal analyses.

View Article and Find Full Text PDF

Artificial Intelligence Predicts GBA1 Mutated Status in Parkinson's Disease Patients.

Mov Disord Clin Pract

September 2025

Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.

Background: GBA1 variants are the major genetic risk factor for Parkinson's Disease (PD) and account for 5-30% of PD cases depending on the population and age at onset of the disease.

Objectives: The aim of this study was to assess whether Artificial Intelligence (AI) could predict GBA1-mutated genotype in PD (GBA1-PD). Particularly, the main objective was to identify a Machine Learning (ML) model capable of accurately providing a pre-test estimate of GBA1-mutated status, relying on the clinical and demographic variables with the highest predictive value.

View Article and Find Full Text PDF

ObjectiveAccurate prognostication is crucial for managing human immunodeficiency virus (HIV)-associated cutaneous T-cell lymphoma. In this study, we aimed to develop an improved machine learning-based prognostic model for predicting the 5-year survival rates in HIV-associated cutaneous T-cell lymphoma patients.MethodsWe derived and tested machine learning models using algorithms including Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Random Forest.

View Article and Find Full Text PDF