Functional and structural brain networks in posterior cortical atrophy: A two-centre multiparametric MRI study.

Neuroimage Clin

Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, via Olgettina 60, 20132 Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffael

Published: January 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study identified structural and functional brain connectivity alterations in two independent samples of patients along the posterior cortical atrophy (PCA) disease course. Twenty-one PCA patients and 44 controls were recruited from two expert centres. Microstructural damage of white matter (WM) tracts was assessed using probabilistic tractography; resting state (RS) functional connectivity of brain networks was explored using a model free approach; grey matter (GM) atrophy was investigated using voxel-based morphometry. Compared with controls, common patterns of damage across PCA patients included: GM atrophy in the occipital-temporal-parietal regions; diffusion tensor (DT) MRI alterations of the corpus callosum and superior (SLF) and inferior longitudinal fasciculi (ILF) bilaterally; and decreased functional connectivity of the occipital gyri within the visual network and the precuneus and posterior cingulum within the default mode network (DMN). In PCA patients with longer disease duration and greater disease severity, WM damage extended to the cingulum and RS functional connectivity alterations spread within the frontal, dorsal attentive and salience networks. In PCA, reduced DMN functional connectivity was associated with SLF and ILF structural alterations. PCA patients showed distributed WM damage. Altered RS functional connectivity extends with disease worsening from occipital to temporo-parietal and frontostriatal regions, and this is likely to occur through WM connections. Future longitudinal studies are needed to establish trajectories of damage spreading in PCA and whether a combined DT MRI/RS functional MRI approach is promising in monitoring the disease progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019262PMC
http://dx.doi.org/10.1016/j.nicl.2018.06.013DOI Listing

Publication Analysis

Top Keywords

functional connectivity
20
pca patients
16
functional
8
brain networks
8
posterior cortical
8
cortical atrophy
8
connectivity alterations
8
pca
7
connectivity
6
patients
5

Similar Publications

Forests have been increasingly affected by natural disturbances and human activities. These impacts have caused habitat fragmentation and a loss of ecological connectivity. This study examines potential restoration pathways that reconnect the five largest forest cores in the Castilla y León region of Spain.

View Article and Find Full Text PDF

Dysregulated dopaminergic signaling has been implicated in the pathophysiology of major depressive disorder (MDD) and childhood sexual abuse (CSA), but inconsistencies abound. In a multimodal PET-functional MRI study, harnessing the highly selective tracer [C]altropane, we investigated dopamine transporter availability (DAT) and resting-state functional connectivity (rsFC) within reward-related regions among 112 unmedicated individuals (MDD: n = 37, MDD/CSA: n = 18; CSA no MDD: n = 14; controls: n = 43). Striatal DAT and seed-based rsFC were assessed in the dorsal and ventral striatum and the ventral tegmental area.

View Article and Find Full Text PDF

Cognitive decline is common in multiple sclerosis (MS), although neural mechanisms are not fully understood. The objective was to investigate the impact of mild cognitive impairment (MCI) on the relationship between resting state functional connectivity (RSFC) and cognitive function in older adults with multiple sclerosis (OAMS) and age matched healthy controls. Participants underwent magnetic resonance imaging (MRI) scans and cognitive assessments.

View Article and Find Full Text PDF

Sleep is a complex behavior regulated by various brain cell types. However, the roles of brain-resident macrophages, including microglia and CNS-associated macrophages (CAMs), particularly those derived postnatally, in sleep regulation remain poorly understood. Here, we investigated the effects of resident (embryo-derived) and repopulated (postnatally derived) brain-resident macrophages on the regulation of vigilance states in mice.

View Article and Find Full Text PDF

Primate lateral intraparietal area (LIP) has been directly linked to perceptual categorization and decision-making. However, the intrinsic LIP circuitry that gives rise to the flexible generation of motor responses to sensory instruction remains unclear. Using retrograde tracers, we delineate two distinct operational compartments based on different intrinsic connectivity patterns of dorsal and ventral LIP.

View Article and Find Full Text PDF