Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Plant cell walls are nanocomposites based on cellulose microfibrils embedded in a matrix of polysaccharides and aromatic polymers. They are optimized for different functions (e.g. mechanical stability) by changing cell form, cell wall thickness and composition. To reveal the composition of plant tissues in a non-destructive way on the microscale, Raman imaging has become an important tool. Thousands of Raman spectra are acquired, each one being a spatially resolved molecular fingerprint of the plant cell wall. Nevertheless, due to the multicomponent nature of plant cell walls, many bands are overlapping and classical band integration approaches often not suitable for imaging. Multivariate data analysing approaches have a high potential as the whole wavenumber region of all thousands of spectra is analysed at once.

Results: Three multivariate unmixing algorithms, vertex component analysis, non-negative matrix factorization and multivariate curve resolution-alternating least squares were applied to find the purest components within datasets acquired from micro-sections of spruce wood and Arabidopsis. With all three approaches different cell wall layers (including tiny S1 and S3 with 0.09-0.14 µm thickness) and cell contents were distinguished and endmember spectra with a good signal to noise ratio extracted. Baseline correction influences the results obtained in all methods as well as the way in which algorithm extracts components, i.e. prioritizing the extraction of positive endmembers by sequential orthogonal projections in VCA or performing a simultaneous extraction of non-negative components aiming at explaining the maximum variance in NMF and MCR-ALS. Other constraints applied (e.g. closure in VCA) or a previous principal component analysis filtering step in MCR-ALS also contribute to the differences obtained.

Conclusions: VCA is recommended as a good preliminary approach, since it is fast, does not require setting many input parameters and the endmember spectra result in good approximations of the raw data. Yet the endmember spectra are more correlated and mixed than those retrieved by NMF and MCR-ALS methods. The latter two give the best model statistics (with lower lack of fit in the models), but care has to be taken about overestimating the rank as it can lead to artificial shapes due to peak splitting or inverted bands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6031114PMC
http://dx.doi.org/10.1186/s13007-018-0320-9DOI Listing

Publication Analysis

Top Keywords

plant cell
16
cell walls
12
cell wall
12
endmember spectra
12
multivariate unmixing
8
cell
8
component analysis
8
nmf mcr-als
8
plant
5
spectra
5

Similar Publications

Background: has been extensively studied for its bioactive components and medicinal properties. This study was carried out to evaluate the fermentation ability of 2.1 yeast to determine suitable fermentation conditions.

View Article and Find Full Text PDF

The Transcription Factor MYB8 Positively Regulates Flavonoid Biosynthesis of Scutellaria baicalensis in Response to Drought Stress.

Plant Cell Environ

September 2025

National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China.

Drought stress dynamically reprograms specialised metabolism in medicinal plants. However, the transcriptional regulatory modules governing stress-adaptive metabolite synthesis remain poorly characterised. Here, we identified SbMYB8 as a drought-responsive transcription factor showing nuclear localisation and dose-dependent induction under drought in Scutellaria baicalensis.

View Article and Find Full Text PDF

The Epigenetic Regulation of Agronomic Traits and Environmental Adaptability in Brassicas.

Plant Cell Environ

September 2025

State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, International Joint R & D Center of Hebei Prov

As essential sources of vegetables, oilseeds, and forage, Brassica crops exhibit complex epigenetic regulation mechanisms involving histone modifications, DNA modifications, RNA modifications, noncoding RNAs, and chromatin remodelling. The agronomic traits and environmental adaptability of crops are regulated by both genetic and epigenetic mechanisms, while epigenetic variation can affect plant phenotypes without changing gene sequences. Furthermore, the impact of epigenetic modifications on plant phenotype has accelerated the crop breeding process.

View Article and Find Full Text PDF

Single-cell multi-omics drives precision crop breeding.

Mol Plant

September 2025

Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore. Electronic address:

View Article and Find Full Text PDF

Sugar metabolism is commonly implicated as crucial in the transition between growth and cessation during winter; however, its exact role remains elusive. The evergreen iris (Iris japonica) ceases growth in winter without entering endodormancy, yet it continues to sustain sugar metabolism and transport throughout the season. Here, we elucidate the mechanisms underlying the sugar-mediated growth transition-the shift between growth and cessation-in I.

View Article and Find Full Text PDF