Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The success of deep convolutional neural networks (NNs) on image classification and recognition tasks has led to new applications in very diversified contexts, including the field of medical imaging. In this paper, we investigate and propose NN architectures for automated multiclass segmentation of anatomical organs in chest radiographs (CXRs), namely for lungs, clavicles, and heart. We address several open challenges including model overfitting, reducing number of parameters, and handling of severely imbalanced data in CXR by fusing recent concepts in convolutional networks and adapting them to the segmentation problem task in CXR. We demonstrate that our architecture combining delayed subsampling, exponential linear units, highly restrictive regularization, and a large number of high-resolution low-level abstract features outperforms state-of-the-art methods on all considered organs, as well as the human observer on lungs and heart. The models use a multiclass configuration with three target classes and are trained and tested on the publicly available Japanese Society of Radiological Technology database, consisting of 247 X-ray images the ground-truth masks for which are available in the segmentation in CXR database. Our best performing model, trained with the loss function based on the Dice coefficient, reached mean Jaccard overlap scores of 95% for lungs, 86.8% for clavicles, and 88.2% for heart. This architecture outperformed the human observer results for lungs and heart.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2018.2806086 | DOI Listing |