Publications by authors named "Alexey A Novikov"

Segmentation in 3-D scans is playing an increasingly important role in current clinical practice supporting diagnosis, tissue quantification, or treatment planning. The current 3-D approaches based on convolutional neural networks usually suffer from at least three main issues caused predominantly by implementation constraints-first, they require resizing the volume to the lower-resolutional reference dimensions, and second, the capacity of such approaches is very limited due to memory restrictions, and third, all slices of volumes have to be available at any given training or testing time. We address these problems by a U-Net-like architecture consisting of bidirectional convolutional long short-term memory and convolutional, pooling, upsampling, and concatenation layers enclosed into time-distributed wrappers.

View Article and Find Full Text PDF

Purpose: We present a cross-modality and fully automatic pipeline for labeling of intervertebral discs and vertebrae in volumetric data of the lumbar and thoracolumbar spine. The main goal is to provide an algorithm that is applicable to a wide range of different sequences and acquisition protocols, like T1- and T2- weighted MR scans, MR Dixon data, and CT scans. This requires that the learned models generalize without retraining to modalities and scans with unseen image contrasts.

View Article and Find Full Text PDF

The success of deep convolutional neural networks (NNs) on image classification and recognition tasks has led to new applications in very diversified contexts, including the field of medical imaging. In this paper, we investigate and propose NN architectures for automated multiclass segmentation of anatomical organs in chest radiographs (CXRs), namely for lungs, clavicles, and heart. We address several open challenges including model overfitting, reducing number of parameters, and handling of severely imbalanced data in CXR by fusing recent concepts in convolutional networks and adapting them to the segmentation problem task in CXR.

View Article and Find Full Text PDF

We propose an automated pipeline for vessel centerline extraction in 3-D computed tomography angiography (CTA) scans with arbitrary fields of view. The principal steps of the pipeline are body part detection, candidate seed selection, segment tracking, which includes centerline extraction, and vessel tree growing. The final tree-growing step can be instantiated in either a semi- or fully automated fashion.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on using 3D MRI to evaluate intervertebral discs (IVDs) for clinical applications.
  • The paper reviews methods for localizing and segmenting IVDs submitted to a challenge at the MICCAI 2015 conference, supported by a dataset of 25 annotated MRI images.
  • Experimental results indicate the best localization and segmentation methods achieved high precision, with mean distances and Dice scores demonstrating their effectiveness, while also discussing their strengths and limitations.
View Article and Find Full Text PDF

GAL4 gene expression imaging using confocal microscopy is a common and powerful technique used to study the nervous system of a model organism such as Drosophila melanogaster. Recent research projects focused on high throughput screenings of thousands of different driver lines, resulting in large image databases. The amount of data generated makes manual assessment tedious or even impossible.

View Article and Find Full Text PDF