98%
921
2 minutes
20
In vivo characterization of intracardiac blood velocity vector fields may provide new clinical information but is currently not available for bedside evaluation. In this paper, 4-D vector flow imaging for intracardiac flow assessment is demonstrated using a clinical ultrasound (US) system and a matrix array transducer, without the use of contrast agent. Two acquisition schemes were developed, one for full volumetric coverage of the left ventricle (LA) at 50 vps and a 3-D thick-slice setup with continuous frame acquisition (4000 vps), both utilizing ECG-gating. The 3-D vector velocity estimates were obtained using a novel method combining phase and envelope information. In vitro validation in a rotating tissue-mimicking phantom revealed velocity estimates in compliance with the ground truth, with a linear regression slope of 0.80, 0.77, and 1.03 for the , , and velocity components, and with standard deviations of 2.53, 3.19, and 0.95 cm/s, respectively. In vivo measurements in a healthy LV showed good agreement with PC-MRI. Quantitative analysis of energy loss (EL) and kinetic energy (KE) further showed similar trends, with peak KE at 1.5 and 2.4 mJ during systole and 3.6 and 3.1 mJ for diastole for US and PC-MRI. Similar for EL, 0.15- 0.2 and 0.7 mW was found during systole and 0.6 and 0.7 mW during diastole, for US and PC-MRI, respectively. Overall, a potential for US as a future modality for 4D cardiac vector flow imaging was demonstrated, which will be further evaluated in clinical studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2018.2844552 | DOI Listing |
J Immunol
September 2025
Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Qidong-Fudan Innovative Institution of Medical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
Hepatitis B virus (HBV) exclusively infects hepatocytes and produces large quantities of subviral particles containing its surface antigen (HBsAg). T cells play a central role in controlling HBV infection but can also mediate liver injury and contribute to disease progression. However, the mechanisms that regulate T-cell responses to eliminate the virus without causing immunopathology during acute HBV infection remain poorly defined.
View Article and Find Full Text PDFNPJ Biomed Innov
September 2025
Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA USA.
Glioblastoma is characterized by aggressive infiltration into surrounding brain tissue, hindering complete surgical resection and contributing to poor patient outcomes. Identifying tumor-specific invasion patterns is essential for advancing our understanding of glioblastoma progression and improving surgical and radiotherapeutic strategies. Here, we leverage in vivo dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to noninvasively quantify interstitial fluid velocity, direction, and diffusion within and around glioblastomas.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Rehabilitation Medicine, Second Xiangya Hospital, Central South University, Changsha 410011.
Objectives: Osteoarthritis (OA) is one of the most common chronic degenerative diseases, with chondrocyte apoptosis and extracellular matrix (ECM) degradation as the major pathological changes. The mechanical stimulation can attenuate chondrocyte apoptosis and promote ECM synthesis, but the underlying molecular mechanisms remain unclear. This study aims to investigate the role of primary cilia (PC) in mediating the effects of mechanical stimulation on OA progression.
View Article and Find Full Text PDFThis paper presents a novel multiscale signal processing framework for power quality disturbance (PQD) and cyber intrusion detection in smart grids, combining Non-Subsampled Contourlet Transform (NSCT), Split Augmented Lagrangian Shrinkage Algorithm (SALSA), and Morphological Component Analysis (MCA). A key innovation lies in an adaptive weighting mechanism within NSCT's directional sub bands, enabling dynamic energy redistribution and enhanced representation of both low-frequency anomalies (e.g.
View Article and Find Full Text PDFMagn Reson Med Sci
September 2025
Department of Radiology, University of California-San Diego, La Jolla CA, USA.
Purpose: This study aims to extend the general kinetic model (GKM) for perfusion signal analysis using multi-pulsed arterial spin labeling (mPASL) acquisitions with multiple post-labeling delays (mPLD). The approach aims to improve accuracy and gain potential for broader experimental and clinical applications.
Methods: The magnetization vector evolution of the mPASL technique was analyzed using sequence diagrams and numerical simulation, supplemented by static phantom experiments.