Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A brain-computer interface (BCI) is a communication approach that permits cerebral activity to control computers or external devices. Brain electrical activity recorded with electroencephalography (EEG) is most commonly used for BCI. Noise-assisted multivariate empirical mode decomposition (NA-MEMD) is a data-driven time-frequency analysis method that can be applied to nonlinear and nonstationary EEG signals for BCI data processing. However, because white Gaussian noise occupies a broad range of frequencies, some redundant components are introduced. To solve this leakage problem, in this study, we propose using a sinusoidal assisted signal that occupies the same frequency ranges as the original signals to improve MEMD performance. To verify the effectiveness of the proposed sinusoidal signal assisted MEMD (SA-MEMD) method, we compared the decomposition performances of MEMD, NA-MEMD, and the proposed SA-MEMD using synthetic signals and a real-world BCI dataset. The spectral decomposition results indicate that the proposed SA-MEMD can avoid the generation of redundant components and over decomposition, thus, substantially reduce the mode mixing and misalignment that occurs in MEMD and NA-MEMD. Moreover, using SA-MEMD as a signal preprocessing method instead of MEMD or NA-MEMD can significantly improve BCI classification accuracy and reduce calculation time, which indicates that SA-MEMD is a powerful spectral decomposition method for BCI.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2017.2775657DOI Listing

Publication Analysis

Top Keywords

memd na-memd
12
sinusoidal signal
8
signal assisted
8
multivariate empirical
8
empirical mode
8
mode decomposition
8
redundant components
8
proposed sa-memd
8
spectral decomposition
8
decomposition
6

Similar Publications

Emotion is an integral part of human cognitive processes and behaviors. Automatic detection and classification of human emotion has been a goal of applied research. This study presents an approach to detecting emotion from multivariate electroencephalogram (EEG) with signal processing methods applied in the temporal, spectral, and spatial domains.

View Article and Find Full Text PDF

Motor imagery electroencephalogram (EEG) is widely employed in brain-computer interface (BCI) systems. As a time-frequency analysis method for nonlinear and non-stationary signals, multivariate empirical mode decomposition (MEMD) and its noise-assisted version (NA-MEMD) has been widely used in the preprocessing step of BCI systems for separating EEG rhythms corresponding to specific brain activities. However, when applied to multichannel EEG signals, MEMD or NA-MEMD often demonstrate low robustness to noise and high computational complexity.

View Article and Find Full Text PDF

The noise-assisted multivariate Empirical mode decomposition (NA-MEMD) is applied to multi-channel EEG signals to obtain narrow-band scale-aligned intrinsic mode functions (IMFs) upon which functional connectivity analysis is performed. The connectivity pattern in relation to inherent functional activity of brain is estimated with the phase locking value (PLV). Instantaneous phase difference among different EEG channels gives PLV that is used to build the functional connectivity map.

View Article and Find Full Text PDF

Recently, there has been significant interest in measuring time-varying functional connectivity (TVC) between different brain regions using resting-state functional magnetic resonance imaging (rs-fMRI) data. One way to assess the relationship between signals from different brain regions is to measure their phase synchronization (PS) across time. However, this requires the a priori choice of type and cut-off frequencies for the bandpass filter needed to perform the analysis.

View Article and Find Full Text PDF

Causality inference has arrested much attention in academic studies. Currently, multiple methods such as Granger causality, Convergent Cross Mapping (CCM), and Noise-assisted Multivariate Empirical Mode Decomposition (NA-MEMD) are introduced to solve the problem. Motivated by the researchers who uploaded the open-source code for causality inference, we hereby present the Matlab code of NA-MEMD Causal Decomposition to help users implement the algorithm in multiple scenarios.

View Article and Find Full Text PDF