Quantitative microinjection using fluorescence calibration of streaming microdroplets on a superhydrophobic surface.

Exp Cell Res

Departments of Radiology, Center for Advanced Surface Engineering, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA. Electronic address:

Published: September 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A simple and reproducible procedure was developed to measure the volume of liquid microinjected into cells. A calibration curve of droplet fluorescence intensity versus volume was constructed by injecting a fluorescent dextran solution through a 125-150 µm diameter micropipette into an oil-filled culture dish to create a spray of varied-sized droplets. The droplets retained a spherical shape because they were in an oil medium and they settled onto a glass surface coated with a superhydrophobic surface. Fluorescent micrographs of the droplets were obtained and analyzed with Image-J software to quantify the fluorescence intensity and radius of each spherical droplet to produce the calibration curve. Subsequently, Dut-145 human prostate carcinoma cells were microinjected with the same fluorescent dextran solution and fluorescent micrographs of the cells were obtained using the identical exposure conditions used to photograph the droplets. The measured fluorescence intensity of the microinjected cells was entered into the formula for the regression line that was fit to the calibration curve allowing determination of the volume of solution injected into each cell. Thus, a mixture consisting of known concentrations of a test material of test material (macromolecules, drugs, etc.) and a fluorescent dextran, volumetric, tracer can be used to quantify the relationship between the amount of a microinjected material and subsequent effects on cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2018.07.006DOI Listing

Publication Analysis

Top Keywords

calibration curve
12
fluorescence intensity
12
fluorescent dextran
12
superhydrophobic surface
8
microinjected cells
8
dextran solution
8
fluorescent micrographs
8
test material
8
cells
5
fluorescent
5

Similar Publications

Predicting the future risk and outcomes of severe heart failure and coronary artery disease with machine learning in the UK Biobank Cohort.

PLoS One

September 2025

Department of Medicine, The Red Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada.

Background: In order to seriously impact the global burden of heart failure (HF) and coronary artery disease (CAD), identifying at-risk individuals as early as possible is vital. Risk calculator tools in wide clinical use today are informed by traditional statistical methods that have historically yielded only modest prediction accuracy.

Methods: This study uses machine learning algorithms to generate predictions models for the development and progression of severe HF and CAD.

View Article and Find Full Text PDF

Epilepsy, a highly individualized neurological disorder, affects millions globally. Electroencephalography (EEG) remains the cornerstone for seizure diagnosis, yet manual interpretation is labor-intensive and often unreliable due to the complexity of multi-channel, high-dimensional data. Traditional machine learning models often struggle with overfitting and fail in fully capturing the highdimensional, temporal dynamics of EEG signals, restricting their clinical utility.

View Article and Find Full Text PDF

Non-invasive prediction of invasive lung adenocarcinoma and high-risk histopathological characteristics in resectable early-stage adenocarcinoma by [18F]FDG PET/CT radiomics-based machine learning models: a prospective cohort Study.

Int J Surg

September 2025

Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China

Background: Precise preoperative discrimination of invasive lung adenocarcinoma (IA) from preinvasive lesions (adenocarcinoma in situ [AIS]/minimally invasive adenocarcinoma [MIA]) and prediction of high-risk histopathological features are critical for optimizing resection strategies in early-stage lung adenocarcinoma (LUAD).

Methods: In this multicenter study, 813 LUAD patients (tumors ≤3 cm) formed the training cohort. A total of 1,709 radiomic features were extracted from the PET/CT images.

View Article and Find Full Text PDF

Objective: The risk factors of postoperative survival in T4N0M0 NSCLC patients are not fully understood. This study aimed to develop and validate a nomogram model for predicting postoperative survival in patients with T4N0M0 non-small cell lung cancer (NSCLC).

Methods: Clinicopathological data of patients were collected from Surveillance, Epidemiology, and End Results (SEER) database.

View Article and Find Full Text PDF

Ionic liquids (ILs) are a class of organic salts with melting points below 100°C. Owing to their unique chemical and physical properties, they are used as solvents and catalysts in various chemical transformations, progressively replacing common volatile organic solvents (VOCs) in green synthetic applications. However, their intrinsic ionic nature can restrict the use of mass spectrometric techniques to monitor the time progress of a reaction occurring in an IL medium, thus preventing one from following the formation of the reaction products or intercepting the reaction intermediates.

View Article and Find Full Text PDF