Hypoxia and IF₁ Expression Promote ROS Decrease in Cancer Cells.

Cells

Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, Bologna 40126, Italy.

Published: June 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The role of reactive oxygen species (ROS) in the metabolic reprogramming of cells adapted to hypoxia and the interplay between ROS and hypoxia in malignancy is under debate. Here, we examined how ROS levels are modulated by hypoxia in human cancer compared to untransformed cells. Short time exposure (20 min) of either fibroblasts or 143B osteosarcoma cells to low oxygen tension down to 0.5% induced a significant decrease of the cellular ROS level, as detected by the CellROX fluorescent probe (−70%). Prolonging the cells’ exposure to hypoxia for 24 h, ROS decreased further, reaching nearly 20% of the normoxic value. In this regard, due to the debated role of the endogenous inhibitor protein (IF₁) of the ATP synthase complex in cancer cell bioenergetics, we investigated whether IF₁ is involved in the control of ROS generation under severe hypoxic conditions. A significant ROS content decrease was observed in hypoxia in both IF₁-expressing and IF₁- silenced cells compared to normoxia. However, IF₁-silenced cells showed higher ROS levels compared to IF1-containing cells. In addition, the MitoSOX Red-measured superoxide level of all the hypoxic cells was significantly lower compared to normoxia; however, the decrease was milder than the marked drop of ROS content. Accordingly, the difference between IF₁-expressing and IF₁-silenced cells was smaller but significant in both normoxia and hypoxia. In conclusion, the interplay between ROS and hypoxia and its modulation by IF₁ have to be taken into account to develop therapeutic strategies against cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071258PMC
http://dx.doi.org/10.3390/cells7070064DOI Listing

Publication Analysis

Top Keywords

ros
11
cells
9
hypoxia
8
interplay ros
8
ros hypoxia
8
ros levels
8
ros content
8
compared normoxia
8
if₁-silenced cells
8
hypoxia if₁
4

Similar Publications

The generation of reactive oxygen species (ROS) through nanozyme-mediated sonocatalytic therapy has demonstrated remarkable therapeutic efficacy in the field of cancer. Nevertheless, it remains a significant challenge for nanozymes with a single catalytic active center to generate sufficient ROS via Fenton or Fenton-like reactions to effectively induce tumor cell death. In order to enhance the catalytic efficacy, we devised and synthesized a multiple active centre and mitochondrial-targeted perovskite nanozyme (NCFP), doped with cobalt (Co) element, and incorporated 4-carboxybutyltriphenylphosphonium bromide (TPP) as a mitochondrial targeting marker for ultrasound (US)-assisted enzyme-like catalytic treatment of tumors.

View Article and Find Full Text PDF

Myocardial injury constitutes a life-threatening complication of sepsis, driven by synergistic oxidative-inflammatory pathology involving dysregulated production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and proinflammatory cytokines. This pathophysiological cascade remarkably elevates morbidity and mortality rates in septic patients, emerging as a key contributor to poor clinical outcomes. Despite its clinical significance, no clinically validated therapeutics currently exist for managing septic cardiomyopathy.

View Article and Find Full Text PDF

Background: Cardiac ischemia reperfusion (I/R) injury is a serious consequence of reperfusion therapy for myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is a calcium-dependent enzyme that catalyzes the citrullination of proteins. In previous studies, PAD4 inhibition protected distinct organs from I/R injury by preventing the formation of neutrophil extracellular traps (NETs) and attenuating inflammatory responses.

View Article and Find Full Text PDF

ObjectiveRecurrent varicose veins (RVVs) following open surgical procedures are common and present significant treatment challenges. Redo open surgery (rOS) presents risks leading to a need for alternative treatment options. This study compares the safety and efficacy of ultrasound-guided foam sclerotherapy (UGFS), used to treat recurrent reflux and remove neovascular and tributary venous networks in the thigh, to redo open surgery (rOS) for the treatment of C2r.

View Article and Find Full Text PDF

Dynamic regulation of the oxidative stress response by the E3 ligase TRIP12.

Cell Rep

September 2025

Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berk

Centered on the transcription factor NRF2 and its E3 ligase CUL3, the oxidative stress response protects cells from damage by reactive oxygen species (ROS). Increasing ROS inhibits CUL3 to stabilize NRF2 and elicit antioxidant gene expression, while cells recovering from stress rapidly turn over NRF2 again to prevent reductive stress and oxeiptosis-dependent death. How cells reinitiate NRF2 degradation after ROS have been cleared remains poorly understood.

View Article and Find Full Text PDF