98%
921
2 minutes
20
Background: A low-protein diet (LPD) is believed to be beneficial in slowing the progression of kidney disease. It is reported that low protein diet can improve protein, sugar and lipid metabolism, and reduce the symptoms and complications of renal insufficiency. However, there has been controversial regarding the effects of protein restriction on diabetic nephropathy (DN).
Objective: To investigate the efficacy of LPD on renal function in patients with type 1 or 2 DN by meta-analysis of randomized controlled trials (RCTs).
Design: PubMed, MEDLINE, EMBASE and China National Knowledge Infrastructure databases were searched. Eleven randomized controlled trials met the inclusion criteria, of which 10 were English and 1 was Chinese. The primary outcome was a change in glomerular filtration rate (GFR). The secondary outcome was a change in proteinuria. Random-effects models were used to calculate the standardized mean difference (SMD) and the corresponding 95% confidence intervals (CI). Subgroup analyses were also performed.
Results: Our research indicated that LPD was not associated with a significant improvement in GFR (1.59 ml · min · 1.73 m, 95% CI -0.57, 3.75, I = 76%; p = 0.15). This effect was consistent across the subgroups regardless of type of diabetes, course of diabetes and intervention period. Our results also showed that there was no significant difference on improvement of proteinuria in patients of LPD and those in normal-protein diet groups (- 0.48, 95%CI-1.70, 0.74, I = 94%, p = 0.44). Subgroup analysis revealed that LPD resulted in increased excretion of proteinuria in patients with type 2 diabetes (1.32, 95% CI 0.17, 2.47, I = 86%, p = 0.02).
Conclusion: The present research showed that LPD was not significantly associated with improvement of renal function in patients with either type 1 or 2 diabetic nephropathy. Although these results do not completely eliminate the possibility that LPD is beneficial for patients with diabetic nephropathy, it does not seem to be significant benefit to renal function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6006775 | PMC |
http://dx.doi.org/10.1186/s12944-018-0791-8 | DOI Listing |
Clin Kidney J
September 2025
Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.
Genome editing technologies, particularly clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, have transformed biomedical research by enabling precise genetic modifications. Due to its efficiency, cost-effectiveness and versatility, CRISPR has been widely applied across various stages of research, from fundamental biological investigations in preclinical models to potential therapeutic interventions. In nephrology, CRISPR represents a groundbreaking tool for elucidating the molecular mechanisms underlying kidney diseases and developing innovative therapeutic approaches.
View Article and Find Full Text PDFFront Pharmacol
August 2025
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, China.
Diabetes mellitus is a metabolic disease with a high global prevalence, which affects blood vessels throughout the entire body. As the disease progresses, it often leads to complications, including diabetic retinopathy and nephropathy. Currently, in addition to traditional cellular and animal models, more and more organoid models have been used in the study of diabetes and have broad application prospects in the field of pharmacological research.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center of Shenyang Medical College, Shenyang, China.
MR409, a synthetic growth hormone-releasing hormone (GHRH) analogue, has demonstrated therapeutic potential in enhancing islet cell transplantation efficacy in diabetes mice and exerts beneficial effects on cardiovascular diseases. The present study investigated the renoprotective effects of MR409 on db/db and streptozotocin (STZ)-induced diabetic mice, focusing on its role in modulating oxidative stress and ferroptosis. db/db or STZ mice combined with high fat diet were used to establish the type 2 diabetic models.
View Article and Find Full Text PDFPhytochemistry
September 2025
State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; Yunnan Characteristic Plant Extraction Laboratory Co. Ltd, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Educa
Alstoniaschines A‒I (1‒9), nine previously alkaloids sharing five different skeletons were obtained from the leaves of Alstonia scholaris. The structures and absolute configurations were established by their extensive spectroscopic data analyses, including NMR, HRESIMS, X-ray crystallography data, and theoretical ECD calculations. Compounds 1, 2, 3, and 9 exerted significant protective effect against oxidative stress and inflammatory damage of podocytes induced by high glucose, manifesting as the increase of superoxide dismutase, catalase, glutathione peroxidase, alongside the reductions of malondialdehyde, nitric oxide, lactate dehydrogenase.
View Article and Find Full Text PDFClin Chim Acta
September 2025
Department of Physiology, University of Louisville, Louisville 40202 KY, USA. Electronic address:
Diabetic nephropathy (DN) is a major cause of end-stage renal disease, with podocyte injury representing an early pathogenic event. Conventional biomarkers such as albuminuria and eGFR identify renal damage only at advanced stages, limiting opportunities for timely intervention. Wilms' Tumor 1 (WT1), a podocyte-specific transcription factor, has emerged as a sensitive marker of early glomerular stress.
View Article and Find Full Text PDF