98%
921
2 minutes
20
Atypical ruminant pestiviruses are closely related to the two bovine viral diarrhoea virus (BVDV) species, BVDV-1 and BVDV-2. While there is evidence of cross-protective immune responses between BVDV-1 and BVDV-2, despite antigenic differences, there is little information on the antigenic cross-reactivity with atypical ruminant pestiviruses. The aim of this study was therefore to assess the specificity of antibody and T cell responses induced by experimental infection of calves with BVDV-1 strain Ho916, Th/04_KhonKaen (TKK), an Asiatic atypical ruminant pestivirus, or co-infection with both viruses. Homologous virus neutralization was observed in sera from both single virus infected and co-infected groups, while cross-neutralization was only observed in the TKK infected group. T cell IFN-γ responses to both viruses were observed in the TKK infected animals, whereas Ho916 infected calves responded better to homologous virus. Specifically, IFN-γ responses to viral non-structural protein, NS3, were observed in all infected groups while responses to viral glycoprotein, E2, were virus-specific. Broader antigen-specific cytokine responses were observed with similar trends between inoculation groups and virus species. The limited T cell and antibody immune reactivity of Ho916 inoculated animals to TKK suggests that animals vaccinated with current BVDV-1-based vaccines may not be protected against atypical ruminant pestiviruses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2018.06.019 | DOI Listing |
Front Microbiol
August 2025
Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France.
Many species from the genus are causative agents of the bacterial zoonosis brucellosis. Until recently, it was generally believed that these bacteria exhibit strict host specificity; however, recent findings suggest otherwise. is an atypical species, no threat to humans, with a broad host spectrum, primarily found in wildlife and rodents, and is the only species isolated from soil, aquatic environments, and frogs, suggesting its environmental persistence and adaptability to diverse ecological niches.
View Article and Find Full Text PDFMol Genet Genomics
September 2025
Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland.
The aim of this study was to investigate three unrelated Simmental calves with atypical white coat color, identify potential genetic causes using a trio-based whole-genome sequencing approach, and assess the prevalence of the identified variants in the breed. Several inherited alleles affecting coat color, ranging from fawn to red spotted and white-headed, have been described in Simmental cattle originating from Switzerland. However, no genetic variant has yet been associated with an almost completely white coat in this breed.
View Article and Find Full Text PDFBMC Vet Res
September 2025
Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague Suchdol, 165 00, Czech Republic.
Background: Pathogenic blood-feeding nematodes, such as Haemonchus contortus and the invasive Ashworthius sidemi, infect a wide range of wild and domestic ruminants. While the spread of A. sidemi among European cervids has been studied, its presence in chamois (Rupicapra rupicapra) remains poorly documented.
View Article and Find Full Text PDFPrion
December 2025
Canadian and WOAH Reference Laboratory for BSE, Canadian Food Inspection Agency, National Centre for Animal Diseases, Lethbridge, Canada.
Bovine Spongiform Encephalopathy (BSE) is a fatal neurodegenerative disease in cattle which can be either classical BSE (C-BSE) or atypical BSE (including H-BSE and L-BSE). Here, we report the results of our analyses of an H-BSE case found in Canada in 2021, indicating restriction of the pathological agent (PrP) mainly to the central nervous system with no or occasional weak involvement of peripheral tissues. Importantly, a non-synonymous mutation at codon 211 of the gene was detected and confirmed to be present as a germline mutation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2025
Centro de Investigación en Sanidad Animal- Instituto Nacional de Investigaciones Agrarias- Consejo Superior de Investigaciones Científicas, Valdeolmos, Madrid 28130, Spain.
Prion diseases can manifest with distinct phenotypes in a single species, a phenomenon known as prion strains. Upon cross-species transmission, alterations in the disease phenotype can occur, interpreted as the emergence of a new strain. Two main and non-mutually exclusive evolutionary hypotheses have been proposed to explain this phenomenon: the "conformational shift" or "deformed templating" and the "conformational selection.
View Article and Find Full Text PDF