Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study was designed to evaluate the anti-inflammatory effect of recombinant human kallistatin (Kal) on ulcerative colitis (UC) in the mouse model. Acute colitis was induced by administration of 4% dextran sodium suffate (DSS) to KM mice for 7 days. The mice were then randomized into 5 groups: model control, Kal 0.2 mg·kg(-1)·d(-1), 1.0 mg·kg(-1)·d(-1) and 2.0 mg·kg-1·d(-1) group, salazosulfapyridine (SASP) group. Ten age-matched normal KM mouse were administered with saline in the normal control. The weight, colon length, inflammation factor (MPO/SOD/MDA) and TNF-α/IL-10 levels among the five groups of mice were determined. The results showed that histological index score and MPO/MDA/TNF-α levels of high-dose Kal treatment group and SASP group were significantly lower compared with the model group (P < 0.01), but the weight, colon length, IL-10 level and SOD activity were significant higher than the model group (P < 0.01), approaching the normal group. These parameters showed that Kal can significantly relieve the UC state in a dose-dependent manner. This study demonstrates that Kal significantly remits UC in mice, and participates in the regulation of inflammatory cytokines TNF-α/IL-10 levels and has some antioxidant activity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

recombinant human
8
human kallistatin
8
ulcerative colitis
8
mg·kg-1·d-1 mg·kg-1·d-1
8
sasp group
8
weight colon
8
colon length
8
tnf-α/il-10 levels
8
model group
8
group 001
8

Similar Publications

Human parainfluenza virus 2 (HPIV-2) and human parainfluenza virus 4 (HPIV-4) are significant but underappreciated respiratory pathogens, particularly among high-risk populations including children, the elderly, and immunocompromised individuals. In this study, we sequenced 101 HPIV-2 and HPIV-4 genomes from respiratory samples collected in western Washington State and performed comprehensive evolutionary analyses using both new and publicly available sequences. Phylogenetic and phylodynamic analyses revealed that both HPIV-2 and HPIV-4 evolve at significantly faster rates compared to mumps virus, a reference human orthorubulavirus.

View Article and Find Full Text PDF

Kobuviruses (family Picornaviridae, genus Kobuvirus) are enteric viruses that infect a wide range of both human and animal hosts. Much of the evolutionary history of kobuviruses remains elusive, largely due to limited screening in wildlife. Bats have been implicated as major sources of virulent zoonoses, including coronaviruses, henipaviruses, lyssaviruses, and filoviruses, though much of the bat virome still remains uncharacterized.

View Article and Find Full Text PDF

There is no vaccine for severe malaria. STEVOR antigens on the surface of -infected red blood cells are implicated in severe malaria and are targeted by neutralizing antibodies, but their epitopes remain unknown. Using computational immunology, we identified highly immunogenic overlapping B- and T-cell epitopes (referred to as multiepitopes, 7-27 amino acids) in the semiconserved domain of four STEVORs linked with severe malaria and clinical immunity.

View Article and Find Full Text PDF

The RecBC complex protects single-stranded DNA gaps during lesion bypass.

Proc Natl Acad Sci U S A

September 2025

Cancer Research Center of Marseille: Team DNA Damage and Genome Instability|CNRS, Inserm, Institut Paoli-Calmettes, Aix Marseille Université, Marseille 13009, France.

Following encounter with an unrepaired DNA lesion, replication is halted and can restart downstream of the lesion leading to the formation of a single-stranded DNA (ssDNA) gap. To complete replication, this ssDNA gap is filled in by one of the two lesion tolerance pathways: the error-prone Translesion Synthesis (TLS) or the error-free Homology Directed Gap Repair (HDGR). In the present work, we evidence a role for the RecBC complex distinct from its canonical function in homologous recombination at DNA double strand breaks.

View Article and Find Full Text PDF

Recent Advances in Gene Therapy for Hemophilia.

Clin Appl Thromb Hemost

September 2025

Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.

Hemophilia, an X-linked monogenic disorder, arises from mutations in the or genes, which encode clotting factor VIII (FVIII) or clotting factor IX (FIX), respectively. As a prominent hereditary coagulation disorder, hemophilia is clinically manifested by spontaneous hemorrhagic episodes. Severe cases may progress to complications such as stroke and arthropathy, significantly compromising patients' quality of life.

View Article and Find Full Text PDF