98%
921
2 minutes
20
Graphene quantum dots (GQDs) are widely used for biomedical applications. Previously, the low-level toxicity of GQDs in vivo and in vitro has been elucidated, but the underlying molecular mechanisms remained largely unknown. Here, we employed the Illumina high-throughput RNA-sequencing to explore the whole-transcriptome profiling of zebrafish larvae after exposure to GQDs. Comparative transcriptome analysis identified 2116 differentially expressed genes between GQDs exposed groups and control. Functional classification demonstrated that a large proportion of genes involved in acute inflammatory responses and detoxifying process were significantly up-regulated by GQDs. The inferred gene regulatory network suggested that activator protein 1 (AP-1) was the early-response transcription factor in the linkage of a cascade of downstream (pro-) inflammatory signals with the apoptosis signals. Moreover, hierarchical signaling threshold determined the high sensitivity of complement system in zebrafish when exposed to the sublethal dose of GQDs. Further, 35 candidate genes from various signaling pathways were further validated by qPCR after exposure to 25, 50, and 100 μg/mL of GQDs. Taken together, our study provided a valuable insight into the molecular mechanisms of potential bleeding risks and detoxifying processes in response to GQDs exposure, thereby establishing a mechanistic basis for the biosafety evaluation of GQDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2018.05.063 | DOI Listing |
ACS Nano
September 2025
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
Visible-light activation is highly desirable for gas sensors due to its energy-efficient operation and broad accessibility. Photocatalysis offers a promising strategy for visible-light activation; however, a limited understanding of the band engineering-mediated activation process restricts the rational design of photocatalysts for gas sensors. In this work, we systematically investigate the impact of band tuning in photocatalysts on the nitrogen dioxide (NO) sensing performance of InO-based sensors, employing graphene quantum dots (GQDs) as photosensitizers.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
We conducted a study to examine the impact of an external electric field on the curvature of metal and divalent metal ion doped 4N divacancy-defected graphene quantum dots (4N-GQDs), utilizing Density Functional Theory (DFT). We considered six common metal species, namely Ca, Ca, Cr, Cr, Fe, and Fe. Our findings reveal that the curvature of metal and divalent metal ion-doped-4N-GQDs increases as the external electric field strength rises in both positive and negative directions.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2025
Kunming Key Laboratory of Energy Materials Chemistry, Yunnan Minzu University, Kunming 650500, Yunnan, China. Electronic address:
Heavy metals (Fe) and pesticides (diquat) pose serious threats to the environment and human health, necessitating the development of efficient detection technologies. In this study, metal/non-metal doped graphene quantum dots (GQDs) were developed. Given excellent sensitivity, stability and selectivity, it was used as a fluorescent probe with multiple functions for simultaneous detection of two pollutants.
View Article and Find Full Text PDFJ Mater Chem B
August 2025
Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
Although recent breakthroughs have brought hope for a complete cure for cancer, early and rapid diagnosis remains crucial for effective treatment. Carbohydrate antigen 19-9 (CA19-9) is a clinically established biomarker widely used in the diagnosis and management of gastric and pancreatic cancers. Accurate detection of CA19-9 is crucial for early diagnosis, treatment monitoring, and predicting recurrence.
View Article and Find Full Text PDFEur J Pharm Biopharm
August 2025
Maliba Pharmacy College, Uka Tarsadia University, Surat 394350 Gujarat, India. Electronic address:
The nitrogen doped graphene quantum dots (N-GQDs) were functionalized for active targeting of epidermal growth factor receptor (EGFR) overexpressing breast cancer cells for the delivery of palbociclib (PLB). The N-GQDs were covalently conjugated with a dodecapeptide, GE11 (YHWYGYTPQNVI), a ligand with high affinity for EGFR and then loaded with PLB. The resulting PLB loaded N-GQDs (PLB-N-GQDs) and GE11-N-GQDs (GE11-PLB-N-GQDs) exhibited particle size of 85.
View Article and Find Full Text PDF