A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. | LitMetric

Article Synopsis

  • The study explores using advanced AI, specifically deep learning, to automatically analyze wildlife images from motion-sensor camera traps, enhancing ecological research and conservation efforts.
  • By training deep convolutional neural networks on a massive dataset, the system can identify and describe animal behaviors with over 93.8% accuracy, significantly reducing the manual labor required for data extraction.
  • The automated system not only speeds up the process, potentially saving over 17,000 hours of human effort, but also enables more efficient, cost-effective, and real-time data collection for wildlife monitoring.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Having accurate, detailed, and up-to-date information about the location and behavior of animals in the wild would improve our ability to study and conserve ecosystems. We investigate the ability to automatically, accurately, and inexpensively collect such data, which could help catalyze the transformation of many fields of ecology, wildlife biology, zoology, conservation biology, and animal behavior into "big data" sciences. Motion-sensor "camera traps" enable collecting wildlife pictures inexpensively, unobtrusively, and frequently. However, extracting information from these pictures remains an expensive, time-consuming, manual task. We demonstrate that such information can be automatically extracted by deep learning, a cutting-edge type of artificial intelligence. We train deep convolutional neural networks to identify, count, and describe the behaviors of 48 species in the 3.2 million-image Snapshot Serengeti dataset. Our deep neural networks automatically identify animals with >93.8% accuracy, and we expect that number to improve rapidly in years to come. More importantly, if our system classifies only images it is confident about, our system can automate animal identification for 99.3% of the data while still performing at the same 96.6% accuracy as that of crowdsourced teams of human volunteers, saving >8.4 y (i.e., >17,000 h at 40 h/wk) of human labeling effort on this 3.2 million-image dataset. Those efficiency gains highlight the importance of using deep neural networks to automate data extraction from camera-trap images, reducing a roadblock for this widely used technology. Our results suggest that deep learning could enable the inexpensive, unobtrusive, high-volume, and even real-time collection of a wealth of information about vast numbers of animals in the wild.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6016780PMC
http://dx.doi.org/10.1073/pnas.1719367115DOI Listing

Publication Analysis

Top Keywords

deep learning
12
neural networks
12
camera-trap images
8
animals wild
8
deep neural
8
deep
6
automatically
4
automatically identifying
4
identifying counting
4
counting describing
4

Similar Publications