98%
921
2 minutes
20
Proteomics and bioinformatics are a useful combined technology for the characterization of protein expression level and modulation associated with the response to a drug and with its mechanism of action. The folate pathway represents an important target in the anticancer drugs therapy. In the present study, a discovery proteomics approach was applied to tissue samples collected from ovarian cancer patients who relapsed after the first-line carboplatin-based chemotherapy and were treated with pemetrexed (PMX), a known folate pathway targeting drug. The aim of the work is to identify the proteomic profile that can be associated to the response to the PMX treatment in pre-treatement tissue. Statistical metrics of the experimental Mass Spectrometry (MS) data were combined with a knowledge-based approach that included bioinformatics and a literature review through ProteinQuest™ tool, to design a protein set of reference (PSR). The PSR provides feedback for the consistency of MS proteomic data because it includes known validated proteins. A panel of 24 proteins with levels that were significantly different in pre-treatment samples of patients who responded to the therapy vs. the non-responder ones, was identified. The differences of the identified proteins were explained for the patients with different outcomes and the known PMX targets were further validated. The protein panel herein identified is ready for further validation in retrospective clinical trials using a targeted proteomic approach. This study may have a general relevant impact on biomarker application for cancer patients therapy selection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5952181 | PMC |
http://dx.doi.org/10.3389/fphar.2018.00454 | DOI Listing |
Menopause
September 2025
Department of Gynecologic Oncology, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY.
Objective: Endometrial cancer (EC) and epithelial ovarian cancer (EOC) affect women of all ages, and the incidence of endometrial cancer in premenopausal women is rising. Menopause can be detrimental to longevity and quality of life, but evidence suggests estrogen therapy (ET) is safe in these patients. The purpose of this study was to evaluate the practice patterns of gynecologists and gynecologic oncologists (GYO) in the United States in regards to prescription of ET to gynecologic cancer patients.
View Article and Find Full Text PDFPLoS One
September 2025
Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China.
MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.
View Article and Find Full Text PDFClin Transl Oncol
September 2025
Ophthalmology Unit, Cannizzaro Hospital, 95126, Catania, Italy.
Antibody-drug conjugates (ADCs) represent a promising therapeutic approach in gynecologic cancers, particularly ovarian and cervical malignancies. Agents such as mirvetuximab soravtansine, and tisotumab vedotin, targeting folate receptor alpha and tissue factor, respectively, reported clinical efficacy in patients with limited options. However, their use is associated with ocular toxicities, including keratopathy, blurred vision, and dry eye, which may impact adherence and quality of life.
View Article and Find Full Text PDFFASEB J
September 2025
Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, Jilin, China.
Tumor-associated macrophages (TAMs) act as a vital player in the immunosuppressive tumor microenvironment (TME) and have received widespread attention in the treatment of cancer in recent times. Nevertheless, simultaneously inducing TAM repolarization and strengthening their phagocytic ability on cancer cells is still a significant challenge. Ferroptosis has received widespread attention due to its lethal effects on tumor cells, but its role in TAMs and its impact on tumor progression have not yet been defined.
View Article and Find Full Text PDFCancer Immunol Res
September 2025
The Wistar Institute, Philadelphia, PA, United States.
Ovarian cancer remains a major health threat with limited treatment options available. It is characterized by immunosuppressive tumor microenvironment (TME) maintained by tumor-associated macrophages (TAMs) hindering anti-tumor responses and immunotherapy efficacy. Here we show that targeting retinoblastoma protein (Rb) by disruption of its LxCxE cleft pocket causes preferential cell death in Rbhigh M2 polarized or M2-like Rbhigh immunosuppressive TAMs by induction of ER stress, p53 and mitochondria-related cell death pathways.
View Article and Find Full Text PDF