A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A hydrophobic low-complexity region regulates aggregation of the yeast pyruvate kinase Cdc19 into amyloid-like aggregates . | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cells form stress granules (SGs) upon stress stimuli to protect sensitive proteins and RNA from degradation. In the yeast , specific stresses such as nutrient starvation and heat-shock trigger recruitment of the yeast pyruvate kinase Cdc19 into SGs. This RNA-binding protein was shown to form amyloid-like aggregates that are physiologically reversible and essential for cell cycle restart after stress. Cellular Cdc19 exists in an equilibrium between a homotetramer and monomer state. Here, we show that Cdc19 aggregation is governed by protein quaternary structure, and we investigate the physical-chemical basis of Cdc19's assembly properties. Equilibrium shift toward the monomer state exposes a hydrophobic low-complexity region (LCR), which is prone to induce intermolecular interactions with surrounding proteins. We further demonstrate that hydrophobic/hydrophilic interfaces can trigger Cdc19 aggregation Moreover, we performed biophysical analyses to compare Cdc19 aggregates with fibrils produced by two known dysfunctional amyloidogenic peptides. We show that the Cdc19 aggregates share several structural features with pathological amyloids formed by human insulin and the Alzheimer's disease-associated Aβ42 peptide, particularly secondary β-sheet structure, thermodynamic stability, and staining by the thioflavin T dye. However, Cdc19 aggregates could not seed aggregation. These results indicate that Cdc19 adopts an amyloid-like structure that is regulated by the exposure of a hydrophobic LCR in its monomeric form. Together, our results highlight striking structural similarities between functional and dysfunctional amyloids and reveal the crucial role of hydrophobic/hydrophilic interfaces in regulating Cdc19 aggregation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6065187PMC
http://dx.doi.org/10.1074/jbc.RA117.001628DOI Listing

Publication Analysis

Top Keywords

cdc19 aggregation
12
cdc19 aggregates
12
cdc19
10
hydrophobic low-complexity
8
low-complexity region
8
yeast pyruvate
8
pyruvate kinase
8
kinase cdc19
8
amyloid-like aggregates
8
monomer state
8

Similar Publications