Negative- and positive-staining transmission electron microscopy (ns/psTEM) is a cornerstone of research and diagnostics, enabling nanometer-resolution analysis of organic specimens from nanoparticles to cells without requiring costly cryo-equipment. For nearly 70 years, uranyl salts like uranyl acetate (UA) have been the gold-standard ns/psTEM-stains. However, mounting safety concerns due to their high toxicity and radioactivity have led to stricter regulations and expensive licensing requirements.
View Article and Find Full Text PDFBackground: Interleukin (IL)-38 is an IL-1 family cytokine that was proposed to exert anti-inflammatory effects. However, its mechanisms of action are not well understood and the identity of the IL-38 receptor(s) remains debated. Proposed candidates include the IL-1 receptor (IL-1R1), the IL-36 receptor (IL-36R) and the orphan receptor IL-1RAPL1.
View Article and Find Full Text PDFInterleukin (IL)-1 family cytokines are essential for host defense at epithelial barriers. The IL-1 family member IL-33 was recently linked to stress granules (SGs). Formation of SGs and other biomolecular condensates is promoted by proteins containing low-complexity regions (LCRs).
View Article and Find Full Text PDFReversible and irreversible amyloids are two diverging cases of protein (mis)folding associated with the cross-β motif in the protein folding and aggregation energy landscape. Yet, the molecular origins responsible for the formation of reversible vs irreversible amyloids have remained unknown. Here we provide evidence at the atomic level of distinct folding motifs for irreversible and reversible amyloids derived from a single protein sequence: human lysozyme.
View Article and Find Full Text PDFAmyloids are known as irreversible aggregates associated with neurodegenerative diseases. However, recent evidence shows that a subset of amyloids can form reversibly and fulfill essential cellular functions. Yet, the molecular mechanisms regulating functional amyloids and distinguishing them from pathological aggregates remain unclear.
View Article and Find Full Text PDFThe conserved Mre11-Rad50 complex is crucial for the detection, signaling, end tethering and processing of DNA double-strand breaks. While it is known that Mre11-Rad50 foci formation at DNA lesions accompanies repair, the underlying molecular assembly mechanisms and functional implications remained unclear. Combining pathway reconstitution in electron microscopy, biochemical assays and genetic studies, we show that S.
View Article and Find Full Text PDFCells respond to stress by blocking translation, rewiring metabolism and forming transient messenger ribonucleoprotein assemblies called stress granules (SGs). After stress release, re-establishing homeostasis and disassembling SGs requires ATP-consuming processes. However, the molecular mechanisms whereby cells restore ATP production and disassemble SGs after stress remain poorly understood.
View Article and Find Full Text PDFWe present a sheathless, microfluidic imaging flow cytometer that incorporates stroboscopic illumination for blur-free fluorescence detection at ultra-high analytical throughput. The imaging platform is capable of multiparametric fluorescence quantification and sub-cellular localization of these structures down to 500 nm with microscopy image quality. We demonstrate the efficacy of the approach through the analysis and localization of P-bodies and stress granules in yeast and human cells using fluorescence and bright-field detection at analytical throughputs in excess of 60,000 and 400,000 cells/s, respectively.
View Article and Find Full Text PDFAggregation-prone proteins (APPs) have been implicated in numerous human diseases but the underlying mechanisms are incompletely understood. Here we comparatively analysed cellular responses to different APPs. Our study is based on a systematic proteomic and phosphoproteomic analysis of a set of yeast proteotoxicity models expressing different human disease-related APPs, which accumulate intracellular APP inclusions and exhibit impaired growth.
View Article and Find Full Text PDFThe microglial receptors CD33 and TREM2 have been associated with risk for Alzheimer's disease (AD). Here, we investigated crosstalk between CD33 and TREM2. We showed that knockout of CD33 attenuated amyloid beta (Aβ) pathology and improved cognition in 5xFAD mice, both of which were abrogated by additional TREM2 knockout.
View Article and Find Full Text PDFProtein aggregates, and in particular amyloids, are generally considered to be inherently irreversible aberrant clumps, and are often associated with pathologies, such as Alzheimer's disease, Parkinson's disease, or systemic amyloidosis. However, recent evidence demonstrates that some aggregates are not only fully reversible, but also perform essential physiological functions. Despite these new findings, very little is known about how these functional protein aggregates are regulated in a physiological context.
View Article and Find Full Text PDFCells form stress granules (SGs) upon stress stimuli to protect sensitive proteins and RNA from degradation. In the yeast , specific stresses such as nutrient starvation and heat-shock trigger recruitment of the yeast pyruvate kinase Cdc19 into SGs. This RNA-binding protein was shown to form amyloid-like aggregates that are physiologically reversible and essential for cell cycle restart after stress.
View Article and Find Full Text PDFProtein aggregation is mostly viewed as deleterious and irreversible causing several pathologies. However, reversible protein aggregation has recently emerged as a novel concept for cellular regulation. Here, we characterize stress-induced, reversible aggregation of yeast pyruvate kinase, Cdc19.
View Article and Find Full Text PDF