98%
921
2 minutes
20
This study provides a comprehensive investigation on the impact of increasing NaCl concentrations on hydroponically grown Stevia rebaudiana cultivars (Shoutian-2 and Fengtian). Growth parameters including plant height, biomass and physiological responses including osmotic potential were measured. In addition, the levels of steviol glycosides, elements and primary metabolites were measured and statistically evaluated. The cultivar Fengtian grew faster, accumulated less Na and compatible organic solutes, and more K in the leaves, as compared to the cv. Shoutian-2. Metabolite analysis identified 81 differentially accumulated metabolites, indicating an alteration in the metabolite phenotype of both cultivars upon exposure to salinity A general increase in many amino acids, amines, sugars and sugar phosphates with a concurrent decrease in most organic acids; including tricarboxylic acid (TCA) cycle intermediates, was observed. In the more salt tolerant cv. Fengtian, the levels of hexose phosphates and metabolites involved in cellular protection increased in response to salinity. These metabolites remained unchanged in the sensitive cv. Shoutian-2. Interestingly, salt treatment notably increased the rebaudioside A concentration by 53% while at the same time stevioside decreased by 38% in Fengtian which has important implications for controlling the relative amounts of reboudioside A and stevioside. The findings of this study leads to the conclusion that mild salinity stress can increase the yield of sweetener compounds, which is dependent on the cultivar and the level of salinity stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2018.05.001 | DOI Listing |
Physiol Plant
September 2025
Centre of Molecular and Environmental Biology (CBMA), Department of Biology, School of Sciences of the University of Minho, Braga, Portugal.
The Mediterranean Basin, a hotspot for tomato production, is one of the most vulnerable areas to climate change, where rising temperatures and increasing soil and water salinization represent major threats to agricultural sustainability. Thus, to understand the molecular mechanisms behind plant responses to this stress combination, an RNA-Seq analysis was conducted on roots and shoots of tomato plants exposed to salt (100 mM NaCl) and/or heat (42°C, 4 h each day) stress for 21 days. The analysis identified over 8000 differentially expressed genes (DEGs) under combined stress conditions, with 1716 DEGs in roots and 2665 in shoots being exclusively modulated in response to this specific stress condition.
View Article and Find Full Text PDFPhysiol Plant
September 2025
Department of Vegetable and Mushroom Growing, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary.
Horticultural crops are increasingly exposed to simultaneous abiotic stresses such as drought, salinity, and temperature extremes, which often exacerbate each other's effects, leading to severe yield and quality losses. Addressing these multifaceted challenges necessitates the development and application of integrated and innovative strategies. This review highlights recent advancements in methodologies to enhance the resilience of horticultural crops against combined abiotic stresses.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India.
Nonexpressor of pathogenesis-related genes 1 (NPR1) is a master regulator of salicylic acid (SA)- facilitated plant hormone signaling and plays a crucial role in plant defense through the activation of systemic acquired resistance (SAR). Although like genes are associated with stress responses in a variety of plant species, no thorough genome-wide investigation of these genes has been undertaken in pearl millet (). This study discovered seven -like genes on four pearl millet chromosomes (Chr1, Chr2, Chr4, and Chr6), which exhibit close affinity to NPRs from other plants and have common gene structures, conserved motifs, and domains.
View Article and Find Full Text PDFPlant Cell Environ
October 2025
Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
Biochem Biophys Res Commun
September 2025
Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, H.P., 173234, India. Electronic address:
Abiotic challenges have a major impact on plant growth and development. Recent research has highlighted the role of long non-coding RNAs in response to these environmental stressors. Long non-coding RNAs are transcripts that are usually longer than 200 nucleotides with no potential for coding proteins.
View Article and Find Full Text PDF