A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The combined effects of FADS gene variation and dietary fats in obesity-related traits in a population from the far north of Sweden: the GLACIER Study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Recent analyses in Greenlandic Inuit identified six genetic polymorphisms (rs74771917, rs3168072, rs12577276, rs7115739, rs174602 and rs174570) in the fatty acid desaturase gene cluster (FADS1-FADS2-FADS3) that are associated with multiple metabolic and anthropometric traits. Our objectives were to systematically assess whether dietary polyunsaturated fatty acid (PUFA) intake modifies the associations between genetic variants in the FADS gene cluster and cardiometabolic traits, and to functionally annotate top-ranking candidates to estimate their regulatory potential.

Methods: Data analyses consisted of the following: interaction analyses between the 6 candidate genetic variants and dietary PUFA intake; gene-centric joint analyses to detect interaction signals in the FADS region; haplotype-centric joint tests across 30 haplotype blocks in the FADS region to refine interaction signals; and functional annotation of top-ranking loci from the previous steps. These analyses were undertaken in Swedish adults from the GLACIER Study (N = 5,160); data on genetic variation and eight cardiometabolic traits were used.

Results: Interactions were observed between rs174570 and n-6 PUFA intake on fasting glucose (P = 0.005) and between rs174602 and n-3 PUFA intake on total cholesterol (P = 0.001). Gene-centric analyses demonstrated a statistically significant interaction effect for FADS and n-3 PUFA on triglycerides (P = 0.005) considering genetic main effects as random. Haplotype analyses revealed three blocks (P < 0.011) that could drive the interaction between FADS and n-3 PUFA on triglycerides; functional annotation of these regions showed that each block harbours a number of highly functional regulatory variants; FADS2 rs5792235 demonstrated the highest functionality score.

Conclusions: The association between FADS variants and triglycerides may be modified by PUFA intake. The intronic FADS2 rs5792235 variant is a potential causal variant in the region, having the highest regulatory potential. However, our results suggest that multiple haplotypes may harbour functional variants in a region, rather than a single causal variant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6124650PMC
http://dx.doi.org/10.1038/s41366-018-0112-3DOI Listing

Publication Analysis

Top Keywords

pufa intake
16
fads gene
8
glacier study
8
fatty acid
8
gene cluster
8
genetic variants
8
cardiometabolic traits
8
interaction signals
8
fads region
8
n-3 pufa
8

Similar Publications