Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Recovery from stroke-induced aphasia is typically protracted and involves complex functional reorganization. The relative contributions of the lesioned and non-lesioned hemispheres to this process have been examined in several cross-sectional studies but longitudinal studies involving several time-points and large numbers of subjects are scarce.

Objective: The aim of this study was to address the gaps in the literature by longitudinally studying the evolution of post-stroke lateralization and localization of language-related fMRI activation in the first year after single left hemispheric ischemic stroke.

Method: Seventeen patients with stroke-induced aphasia were enrolled to undergo detailed behavioral testing and fMRI at 2, 6, 12, 26, and 52 weeks post-stroke. Matched for age, handedness and sex participants were also enrolled to visualize canonical language regions.

Results: Behavioral results showed improvements over time for all but one of the behavioral scores (Semantic Fluency Test). FMRI results showed that the left temporal area participates in compensation for language deficits in the first year after stroke, that there is a correlation between behavioral improvement and the left cerebellar activation over time, and that there is a shift towards stronger frontal left-lateralization of the fMRI activation over the first year post-stroke. Temporary compensation observed in the initial phases of post-stroke recovery that involves the non-lesioned hemisphere may not be as important as previously postulated, since in this study the recovery was driven by activations in the left fronto-temporal regions.

Conclusion: Language recovery after left hemispheric ischemic stroke is likely driven by the previously involved in language and attention left hemispheric networks.

Download full-text PDF

Source
http://dx.doi.org/10.3233/RNN-170767DOI Listing

Publication Analysis

Top Keywords

left hemispheric
16
hemispheric ischemic
12
language recovery
8
recovery left
8
ischemic stroke
8
stroke-induced aphasia
8
fmri activation
8
activation year
8
left
7
language
5

Similar Publications

Humans order numerosity along a left-to-right mental number line (MNL), traditionally considered culturally rooted. Yet, some species at birth show spatial-numerical associations (SNA), suggesting neural origins. Various accounts link SNA to brain lateralization but lack evidence.

View Article and Find Full Text PDF

Is 'number sense' a sense?

Elife

September 2025

Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan.

Experiments on domestic chicks shed light on the links between brain lateralization and the left-to-right mental number line.

View Article and Find Full Text PDF

Blood flow in the human cerebral cortex: Large-scale pial vascularization and 1D simulation.

PLoS Comput Biol

September 2025

Department of Mathematical and Computational Methods, National Laboratory for Scientific Computing, Petrópolis, Brazil.

Understanding cerebral circulation is crucial for early diagnosis and patient-oriented therapies for brain conditions. However, blood flow simulations at the organ scale have been limited. This work introduces a framework for modeling extensive vascular networks in the human cerebral cortex and conducting pulsatile blood flow simulations.

View Article and Find Full Text PDF

Deciphering the source of an embolism is a common challenge encountered in stroke treatment. Carotid stenosis is a key source of embolic strokes. Carotid interventions can be indicated when a patient has greater than 50% stenosis in the carotid ipsilateral to the cerebral infarction, which is designated as the symptomatic carotid.

View Article and Find Full Text PDF

Right hemisphere language network plasticity in aphasia.

Brain

September 2025

Center for Brain Plasticity and Recovery, Center for Aphasia Research and Rehabilitation, Departments of Neurology and Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC, 20057  USA.

The role of the right hemisphere in aphasia recovery has been controversial since the 19th century. Imaging studies have sometimes found increased activation in right hemisphere regions homotopic to canonical left hemisphere language regions, but these results have been questioned due to small sample sizes, unreliable imaging tasks, and task performance confounds that affect right hemisphere activation levels even in neurologically healthy adults. Several principles of right hemisphere language recruitment in aphasia have been proposed based on these studies: that the right hemisphere is recruited primarily by individuals with severe left hemisphere damage, that transcallosal disinhibition results in recruitment of right hemisphere regions homotopic to the lesion, and that increased right hemisphere activation diminishes to baseline levels over time.

View Article and Find Full Text PDF