Reduction of Plutonium(VI) to (V) by Hydroxamate Compounds at Environmentally Relevant pH.

Environ Sci Technol

Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, L-231 , Lawrence Livermore National Laboratory , Livermore , CA 94550 , United States.

Published: June 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Natural organic matter is known to influence the mobility of plutonium (Pu) in the environment via complexation and reduction mechanisms. Hydroxamate siderophores have been specifically implicated due to their strong association with Pu. Hydroxamate siderophores can also break down into di and monohydroxamates and may influence the Pu oxidation state, and thereby its mobility. In this study we explored the reactions of Pu(VI) and Pu(V) with a monohydroxamate compound (acetohydroxamic acid, AHA) and a trihydroxamate siderophore desferrioxamine B (DFOB) at an environmentally relevant pH (5.5-8.2). Pu(VI) was instantaneously reduced to Pu(V) upon reaction with AHA. The presence of hydroxylamine was not observed at these pHs; however, AHA was consumed during the reaction. This suggests that the reduction of Pu(VI) to Pu(V) by AHA is facilitated by a direct one electron transfer. Importantly, further reduction to Pu(IV) or Pu(III) was not observed, even with excess AHA. We believe that further reduction of Pu(V) did not occur because Pu(V) does not form a strong complex with hydroxamate compounds at a circum-neutral pH. Experiments performed using desferrioxamine B (DFOB) yielded similar results. Broadly, this suggests that Pu(V) reduction to Pu(IV) in the presence of natural organic matter is not facilitated by hydroxamate functional groups and that other natural organic matter moieties likely play a more prominent role.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.8b00164DOI Listing

Publication Analysis

Top Keywords

natural organic
12
organic matter
12
hydroxamate compounds
8
environmentally relevant
8
hydroxamate siderophores
8
puvi puv
8
desferrioxamine dfob
8
reduction puiv
8
reduction
6
puv
6

Similar Publications

To address the increasingly limited water availability, using metal-organic frameworks (MOFs) to capture atmospheric water vapor as usable resources has emerged as a promising strategy. The adsorption characteristics of MOFs as well as their step pressure (i.e.

View Article and Find Full Text PDF

This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.

View Article and Find Full Text PDF

Direct Effects of Polyploidization on Floral Scent.

J Chem Ecol

September 2025

Department of Environment and Biodiversity, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria.

Polyploidy is an important driver of the evolution and diversification of flowering plants. Several studies have shown that established polyploids differ from diploids in floral morphological traits and that polyploidization directly affects these traits. However, for floral scent, which is key to many plant-pollinator interactions, only a few studies have quantified differences between established cytotypes, and the direct effects of polyploidization on floral scent are not yet known.

View Article and Find Full Text PDF

The Natural Product Osthole, Known for Its Insecticidal and Antimicrobial Properties, Potentially Binds to Amidase, Offering a Novel Approach for Controlling Tomatoes Gray Mold for the First Time.

Phytopathology

September 2025

Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;

Osthole exhibits strong inhibitory activity against phytopathogenic fungi; however, its antifungal mechanism remains unclear. This study assessed osthole's inhibitory effects on several phytopathogenic fungi, revealing a half-maximal effective concentration of 70.03 μg/ml against the hyphal growth of .

View Article and Find Full Text PDF

In recent years, photosensitizer-based phototherapy has gained increasing attention in antibacterial applications due to its low cost, noninvasive nature, and low drug resistance. Among various materials, porphyrin-based metal-organic frameworks (MOFs) have demonstrated great potential, due to their good biocompatibility, facile designability, and excellent light absorption capabilities that enable highly efficient antibacterial efficacy. However, further optimization of their antibacterial performance remains a key challenge.

View Article and Find Full Text PDF