98%
921
2 minutes
20
Cathepsin B (CatB) has been widely known for its hydrolytic ability and involvement in the innate immunity. However, the mechanism of CatB from teleosts participating in immunoregulation remains poorly understood; and the sequence of CatB from Nile tilapia (NtCatB) has not been cloned and characterized. In this study, the coding sequence of NtCatB was cloned, and then characterized by bioinformatic analysis and heterologous expression. The deduced amino acid sequence (330-aa) of NtCatB contains the representative features of CatB. Quantitative real-time PCR revealed the extensive mRNA expression of NtCatB in six tissues of healthy Nile tilapia, and its transcription level was significantly up-regulated after Streptococcus agalactiae challenge. NtCatB may interact with some immunological function proteins and take part in the regulatory pathway. These results suggest that NtCatB is likely to be involved in the immune reaction. The mature region (residues 79-328, mNtCatB) of NtCatB was cloned and transferred to pET-28a for expressing the recombinant protein. The purified recombinant mNtCatB was verified with the activity of 992.34 U mg min under the optimal condition using a substrate hydrolyzing assay. The recombinant cystatin-A1-like can effectively inhibit the activity of the recombinant mNtCatB, and their binding form was predicted by molecular docking. Our results contribute to elucidating the immunological functions of NtCatB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2018.04.160 | DOI Listing |
J Fish Biol
September 2025
Department of Fisheries and Aquatic Sciences, Cross River University of Technology, PMB 102 Obubra Campus, Calabar, Nigeria.
Floodplains support a diverse cichlid community, yet the trophic ecology of these species is not well understood. This study investigated the dietary niches and trophic guilds of cichlid species in the Cross River floodplain. A total of 480 fish samples from eight cichlid species were collected from three locations (Itu, Obubra, Ikom) over 6 months (October 2019-March 2020).
View Article and Find Full Text PDFVet Res Commun
September 2025
Department of Aquaculture, Faculty of Fisheries, Cukurova University, Adana, Turkey.
This study evaluated how dietary black seed oil (Nigella sativa L.) against the diazinon waterborne toxicity on Nile tilapia (Oreochromis niloticus), focusing on growth performance, hematological and biochemical parameters as well as oxidative stress markers and histological changes. A 40-day feeding trial was carried out using four experimental groups: Group 1 (control group), Group 2 (N.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan. Electronic address:
Dipeptidyl-peptidase (DPP)-IV inhibition by penultimate N-terminus Pro-containing peptides is a promising strategy for Type 2 diabetes (T2D) management, as it prevents the degradation of incretin hormones (DPP-IV substrates) like glucagon-like peptide-1 (GLP-1), thereby prolonging their half-life. However, the stability and bio-accessibility of these peptides are crucial to their efficacy in orally administered therapeutics. We previously identified LPCL and TPFLPDE peptides from tilapia viscera by-products hydrolysates, which exhibited significant DPP-IV inhibition in vitro and in situ while effectively preserving active GLP-1 levels after 2 h treatment in STC-1 cells under basal glucose conditions.
View Article and Find Full Text PDFAquac Nutr
August 2025
Guangdong Provincial Key Laboratories of Marine Biotechnology, Shantou University, Shantou 515063, China.
In mammals, cholesterol accumulation in tissues often results in health damage, such as oxidative stress. In contrast, the adverse effects of cholesterol accumulation on the physiological health of fish remain largely unexplored. The present study investigated the impacts of cholesterol accumulation on oxidative stress and the potential mechanisms involved in Nile tilapia ().
View Article and Find Full Text PDFJ Food Prot
September 2025
Faculty of Veterinary Medicine, Hawassa University, Hawassa Ethiopia, P.O.Box. 05.
Escherichia coli O157:H7 is a significant foodborne pathogen with global public health implications. This study, conducted from December 2022 to July 2023 in Hawassa and Yirgalem, Sidama Region, Ethiopia, assessed the prevalence, molecular identification, and antimicrobial resistance of E. coli O157:H7 in animal-derived foods.
View Article and Find Full Text PDF