A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Adjustable microscopic measurement of nanogap waveguide and plasmonic structures. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We investigate the performance of surface plasmon and Fabry-Perot modes formed between two closely spaced layers. The motivation for this study is twofold: first, to look for modes that may be excited at lower incident angles compared to the usual Kretschmann configuration with similar or superior refractive index responsivity and, second, to develop a simple and applicable method to study these structures over a wide range of separations without recourse to the construction of ad hoc structures. Using back focal plane observation and appropriate signal processing, we show results for the Otto configuration at visible wavelengths at a range of separations not reported hitherto. Moreover, we investigate a hybrid structure we call the Kretschmann-Otto configuration that gives modes that change continuously from a hybridized surface plasmon mode to a zero-order Fabry-Perot mode. The ability to change the separation to small gap distances enables us to examine the Fabry-Perot modes where we show that it has superior refractive index responsivity, by more than an order of magnitude, compared to the Kretschmann configuration.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.57.003453DOI Listing

Publication Analysis

Top Keywords

surface plasmon
8
fabry-perot modes
8
kretschmann configuration
8
superior refractive
8
refractive responsivity
8
range separations
8
adjustable microscopic
4
microscopic measurement
4
measurement nanogap
4
nanogap waveguide
4

Similar Publications