Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: In this prospective study, we compared the invasive measures of microvascular function in two subsets: patients with pharmacoinvasive thrombolysis for STEMI, and patients undergoing percutaneous coronary intervention (PCI) for NSTEMI.

Methods: The study consisted of 17 patients with STEMI referred for cardiac catheterisation post thrombolysis, and 20 patients with NSTEMI. Coronary physiological indexes were measured in each patient before and after PCI.

Results: The median pre-PCI index of microcirculatory function (IMR) at baseline was significantly higher in the STEMI group than the NSTEMI group (26 units vs. 15 units, p = 0.02). Following PCI, IMR decreased in both groups (STEMI 20 units vs. NSTEMI 14 units, p = 0.10). There was an inverse correlation between post PCI IMR and left ventricular ejection fraction (LVEF) (r = -0.52, p = 0.001). Furthermore, post PCI IMR was an independent predictor of index admission LVEF in the total population (β = -0.388, p = 0.02).

Conclusion: Invasive measures of microvascular function are inferior in a pharmacoinvasive STEMI group compared to a clinically stable NSTEMI group. In the STEMI population, the IMR following coronary intervention appears to predict LVEF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carrev.2018.04.007DOI Listing

Publication Analysis

Top Keywords

microvascular function
12
pci imr
12
elevation myocardial
8
myocardial infarction
8
invasive measures
8
measures microvascular
8
coronary intervention
8
stemi group
8
nstemi group
8
post pci
8

Similar Publications

Neuroinflammation within the central nervous system (CNS) is recognized as a critical pathological process in meningitic Escherichia coli (E. coli) infection, leading to severe neurodegenerative disorders and long-term sequelae. Astrocyte reactivity plays a pivotal role in driving the neuroinflammatory cascade in response to pathological stimuli from peripheral sources or other cellular components of the CNS.

View Article and Find Full Text PDF

Vascularization of implanted biomaterials is critical to reconstructive surgery and tissue engineering. Ultimately, the goal is to promote a rapidly perfusable hierarchical microvasculature that persists with time and can meet underlying tissue needs. We have previously shown that using a microsurgical technique, termed micropuncture (MP), in combination with porous granular hydrogel scaffolds (GHS) fabricated via interlinking hydrogel microparticles (microgels) results in a rapidly perfusable patterned microvasculature.

View Article and Find Full Text PDF

Micro-Embolic Events and Their Clearing in the Brain. A Narrative Review.

Acta Physiol (Oxf)

October 2025

Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.

Background: The cerebral circulation is continuously challenged by intravascular micrometer-sized particles that become trapped microvascular-emboli. These particles may include micro-thrombi, stiffened erythrocytes, and leukocytes, while also fat particles, air, and microplastics may cause microvascular embolism.

Review Scope: In this narrative review, we discuss these embolization processes and their acute and chronic consequences.

View Article and Find Full Text PDF

Background: While the invasive index of microcirculation resistance (IMR) remains the gold standard for diagnosing coronary microvascular dysfunction (CMD), its clinical adoption is limited by procedural complexity and cost. Angiography-based IMR (Angio-IMR), a computational angiography-based method, offers a promising alternative. This study evaluates the diagnostic efficacy of Angio-IMR for CMD detection in angina pectoris (AP).

View Article and Find Full Text PDF

Protein kinase C and endothelial dysfunction in select vascular diseases.

Front Cardiovasc Med

August 2025

Department of Surgery, Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.

Protein kinases have crucial roles in intracellular signal transduction pathways that affect a wide range of biochemical processes, including apoptosis, metabolism, proliferation, and protein synthesis. Vascular endothelial cells are important regulators of vasomotor tone, tissue/organ perfusion, and inflammation. Since its discovery in the late 1970s, a growing body of literature implicates protein kinase C (PKC) in pathways involving angiogenesis, endothelial permeability, microvascular tone, and endothelial activation.

View Article and Find Full Text PDF