98%
921
2 minutes
20
Background: In this prospective study, we compared the invasive measures of microvascular function in two subsets: patients with pharmacoinvasive thrombolysis for STEMI, and patients undergoing percutaneous coronary intervention (PCI) for NSTEMI.
Methods: The study consisted of 17 patients with STEMI referred for cardiac catheterisation post thrombolysis, and 20 patients with NSTEMI. Coronary physiological indexes were measured in each patient before and after PCI.
Results: The median pre-PCI index of microcirculatory function (IMR) at baseline was significantly higher in the STEMI group than the NSTEMI group (26 units vs. 15 units, p = 0.02). Following PCI, IMR decreased in both groups (STEMI 20 units vs. NSTEMI 14 units, p = 0.10). There was an inverse correlation between post PCI IMR and left ventricular ejection fraction (LVEF) (r = -0.52, p = 0.001). Furthermore, post PCI IMR was an independent predictor of index admission LVEF in the total population (β = -0.388, p = 0.02).
Conclusion: Invasive measures of microvascular function are inferior in a pharmacoinvasive STEMI group compared to a clinically stable NSTEMI group. In the STEMI population, the IMR following coronary intervention appears to predict LVEF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carrev.2018.04.007 | DOI Listing |
PLoS Pathog
September 2025
National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
Neuroinflammation within the central nervous system (CNS) is recognized as a critical pathological process in meningitic Escherichia coli (E. coli) infection, leading to severe neurodegenerative disorders and long-term sequelae. Astrocyte reactivity plays a pivotal role in driving the neuroinflammatory cascade in response to pathological stimuli from peripheral sources or other cellular components of the CNS.
View Article and Find Full Text PDFAngiogenesis
September 2025
Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA.
Vascularization of implanted biomaterials is critical to reconstructive surgery and tissue engineering. Ultimately, the goal is to promote a rapidly perfusable hierarchical microvasculature that persists with time and can meet underlying tissue needs. We have previously shown that using a microsurgical technique, termed micropuncture (MP), in combination with porous granular hydrogel scaffolds (GHS) fabricated via interlinking hydrogel microparticles (microgels) results in a rapidly perfusable patterned microvasculature.
View Article and Find Full Text PDFActa Physiol (Oxf)
October 2025
Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
Background: The cerebral circulation is continuously challenged by intravascular micrometer-sized particles that become trapped microvascular-emboli. These particles may include micro-thrombi, stiffened erythrocytes, and leukocytes, while also fat particles, air, and microplastics may cause microvascular embolism.
Review Scope: In this narrative review, we discuss these embolization processes and their acute and chronic consequences.
Rev Cardiovasc Med
August 2025
Cardiovascular Department, Xiyuan Hospital of China Academy of Chinese Medical Sciences, 100091 Beijing, China.
Background: While the invasive index of microcirculation resistance (IMR) remains the gold standard for diagnosing coronary microvascular dysfunction (CMD), its clinical adoption is limited by procedural complexity and cost. Angiography-based IMR (Angio-IMR), a computational angiography-based method, offers a promising alternative. This study evaluates the diagnostic efficacy of Angio-IMR for CMD detection in angina pectoris (AP).
View Article and Find Full Text PDFFront Cardiovasc Med
August 2025
Department of Surgery, Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
Protein kinases have crucial roles in intracellular signal transduction pathways that affect a wide range of biochemical processes, including apoptosis, metabolism, proliferation, and protein synthesis. Vascular endothelial cells are important regulators of vasomotor tone, tissue/organ perfusion, and inflammation. Since its discovery in the late 1970s, a growing body of literature implicates protein kinase C (PKC) in pathways involving angiogenesis, endothelial permeability, microvascular tone, and endothelial activation.
View Article and Find Full Text PDF