Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Voltage-gated potassium (Kv) channels are increasingly recognised as key regulators of nociceptive excitability. Kcns1 is one of the first potassium channels to be associated with neuronal hyperexcitability and mechanical sensitivity in the rat, as well as pain intensity and risk of developing chronic pain in humans. Here, we show that in mice, Kcns1 is predominantly expressed in the cell body and axons of myelinated sensory neurons positive for neurofilament-200, including Aδ-fiber nociceptors and low-threshold Aβ mechanoreceptors. In the spinal cord, Kcns1 was detected in laminae III to V of the dorsal horn where most sensory A fibers terminate, as well as large motoneurons of the ventral horn. To investigate Kcns1 function specifically in the periphery, we generated transgenic mice in which the gene is deleted in all sensory neurons but retained in the central nervous system. Kcns1 ablation resulted in a modest increase in basal mechanical pain, with no change in thermal pain processing. After neuropathic injury, Kcns1 KO mice exhibited exaggerated mechanical pain responses and hypersensitivity to both noxious and innocuous cold, consistent with increased A-fiber activity. Interestingly, Kcns1 deletion also improved locomotor performance in the rotarod test, indicative of augmented proprioceptive signalling. Our results suggest that restoring Kcns1 function in the periphery may be of some use in ameliorating mechanical and cold pain in chronic states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053330PMC
http://dx.doi.org/10.1097/j.pain.0000000000001255DOI Listing

Publication Analysis

Top Keywords

kcns1
9
potassium channels
8
sensory neurons
8
kcns1 function
8
function periphery
8
mechanical pain
8
pain
7
mice
4
mice lacking
4
lacking kcns1
4

Similar Publications

KvS proteins are voltage-gated potassium channel subunits that form functional channels when assembled into heteromers with Kv2.1 () or Kv2.2 ().

View Article and Find Full Text PDF

Background: Corticosteroid receptors, including mineralocorticoid receptor (MR) and glucocorticoid receptor (GR), play important roles in inflammatory pain in the dorsal root ganglion (DRG). Although it is widely known that activating the GR reduces inflammatory pain, it has recently been shown that MR activation contributes to pain and neuronal excitability in rodent studies. Moreover, little is known about the translation of this work to humans, or the mechanisms through which corticosteroid receptors regulate inflammatory pain.

View Article and Find Full Text PDF

Objectives: Shortness of breath is a common symptom in patients with cancer. However, the mechanisms that underlie this troublesome symptom are poorly understood. Therefore, this study aimed to determine the prevalence of and associated risk factors for shortness of breath in women prior to breast cancer surgery and identify associations between shortness of breath and polymorphisms for potassium channel genes.

View Article and Find Full Text PDF

Epigenetic clock in the aorta and age-related endothelial dysfunction in mice.

Geroscience

August 2024

Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland.

While epigenetic age (EA) of mouse blood can be determined using DNA methylation analysis at three CpG sites in the Prima1, Hsf4 and Kcns1 genes it is not known whether this approach is useful for predicting vascular biological age. In this study we validated the 3-CpG estimator for age prediction in mouse blood, developed a new predictive model for EA in mouse aorta, and assessed whether epigenetic age acceleration (EAA) measured with blood and aorta samples correlates with age-dependent endothelial dysfunction. Endothelial function was characterized in vivo by MRI in 8-96-week-old C57BL/6 mice.

View Article and Find Full Text PDF

KvS proteins are voltage-gated potassium channel subunits that form functional channels when assembled into heteromers with Kv2.1 (KCNB1) or Kv2.2 (KCNB2).

View Article and Find Full Text PDF