Transformation of Sugars into Chiral Polyols over a Heterogeneous Catalyst.

Angew Chem Int Ed Engl

Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.

Published: July 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transformation of sugars, while maintaining the intrinsic stereochemical structure, is desirable. However, such a transformation requires multistep synthesis with protection and deprotection of the OH groups. Herein, a new method for selective transformation of sugar derivatives into chiral building blocks and a diol synthon, with retention of the intrinsic configuration (stereo- and regioselectively), is demonstrated. The method is based on the selective recognition of cis-vicinal OH groups in sugars and leads to the one-pot removal of the cis-vicinal OH groups, without protection of OH groups (except the OH group of the hemiacetal group), over a heterogeneous CeO -supported ReO and Pd (ReO -Pd/CeO ) catalyst by using H as a reducing agent.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201803043DOI Listing

Publication Analysis

Top Keywords

transformation sugars
8
cis-vicinal groups
8
transformation
4
sugars chiral
4
chiral polyols
4
polyols heterogeneous
4
heterogeneous catalyst
4
catalyst transformation
4
sugars maintaining
4
maintaining intrinsic
4

Similar Publications

The German Federal Ex Situ Genebank for Agricultural and Horticultural Crops (IPK) harbours over 3000 pea plant genetic resources (PGRs), backed up by corresponding information across 16 key agronomic and economical traits. The unbalanced structure and inconsistent format of this historical data has precluded effective leverage of genebank accessions, despite the opportunities contained in its genetic diversity. Therefore, a three-step statistical approach founded in linear mixed models was implemented to enable a rigorous and targeted data curation.

View Article and Find Full Text PDF

Mechanistic analysis of lignocellulosic biomass saccharification by the filamentous fungus Talaromyces cellulolyticus.

Biosci Biotechnol Biochem

September 2025

Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan.

Lignocellulosic biomass is a carbon-neutral resource crucial to advancing a bio-based economy. The filamentous fungus Talaromyces cellulolyticus demonstrates superior biomass saccharification efficiency compared to conventional enzyme-producing fungi, making it a promising host for enzymatic biomass conversion. To enable molecular studies, we developed a robust genetic transformation system for T.

View Article and Find Full Text PDF

Enhancing functional properties and analysis of sugar and metabolite composition of juice through fermentation.

Food Chem X

August 2025

School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China.

fermentation has been shown to provide significant health benefits and safety advantages. This study investigated the impact of fermentation on the physicochemical characteristics, metabolic profiles, and sensory properties of juice (HMJ). fermentation enhanced the physicochemical profile of HMJ by improving bioactive components and increasing the antioxidant activity.

View Article and Find Full Text PDF

Platinum-group metal half-sandwich complexes are considered to be potential replacements of the clinically widely used platins which have several side effects and tend to cause resistance to develop. In our previous works, we used a range of 2-pyridyl-substituted N- and C-glycosyl heterocycles as N,N-chelating ligands to prepare ruthenium(II), osmium(II), iridium(III) and rhodium(III) polyhapto arene/arenyl half-sandwich complexes. Some of these complexes, particularly with the C-glucopyranosyl isoxazole derived ligand in its O-perbenzoylated form, exhibited greater anticancer efficiency than cisplatin and had minimal or negligible effects on non-transformed fibroblasts.

View Article and Find Full Text PDF

Preparation of ketonyl -glycosides from designed glycosyl sulfides and styrenes by a radical pathway.

Sci Adv

September 2025

Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and

Ketonyl -glycosides, a vital subclass of alkyl -glycosides, play essential roles in drug discovery, biochemistry, and materials sciences. However, a practical strategy that merges bench-stable glycosyl donors with styrenes-a ubiquitous class of synthetic building blocks-remains elusive. Herein, we report a simple and general approach for synthesizing ketonyl -glycosides.

View Article and Find Full Text PDF