98%
921
2 minutes
20
The Bragg reflections of 1-decyl-3-methylimidazolium chloride ([C mim][Cl]), a room-temperature ionic liquid, are observed in a lowly scattered wavevector (q) region using high-pressure (HP) small-angle X-ray scattering methods. The HP crystal of [C mim][Cl] was characterized by an extremely long periodic structure. The peak position at the lowest q (1.4 nm ) was different from that of the prepeak observed in the liquid state (2.3 nm ). Simultaneously, Bragg reflections at high-q were detected using HP wide-angle X-ray scattering. The longest lattice constant was estimated to be 4.3 nm using structural analysis. The crystal structure of HP differed from that of the low-temperature (LT) crystal and the LT liquid crystal. With increasing pressure, Bragg reflections in the high-q component became much broader, and were accompanied by phase transition, although those in the low-q component were observed to be relatively sharp.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201701273 | DOI Listing |
Rev Sci Instrum
September 2025
Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Albert-Einstein-Str. 15, 12489 Berlin, Germany.
A new x-ray beamline at the Physikalisch-Technische Bundesanstalt laboratory at BESSY II provides monochromatized radiation in the energy range from 1 to 10 keV, with a typical focus size of 20 μm. It is not only optimized for high-resolution x-ray spectrometry and microscopy but also enables scattering experiments and radiometric measurements. The innovative monochromator consists of a plane grating monochromator module equipped with multilayer-coated blazed gratings for x-ray energies up to 4 keV and an integrated double-crystal monochromator module equipped with silicon (111) crystals for x-ray energies ranging from 2.
View Article and Find Full Text PDFMater Today Bio
October 2025
Leibniz Institute of Polymer Research Dresden, Division Polymer Biomaterials Science, Max Bergmann Center of Biomaterials Dresden, 01069, Dresden, Germany.
Glycosaminoglycan-based biohybrid hydrogels represent a powerful class of cell-instructive materials with proven potential in tissue engineering and regenerative medicine. Their biomedical functionality relies on a nanoscale polymer network that standard microscopy techniques cannot resolve. Here, we introduce an advanced analytical approach that integrates transmission electron microscopy, X-ray scattering, and computer simulations to directly and quantitatively characterize the nanoscale molecular network structure of these hydrogels.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2025
Nanotechnology Lab, Research Laboratories of Saigon Hi-Tech Park, Lot I3, N2 Street, Tang Nhon Phu Ward, Ho Chi Minh City 70000, Vietnam.
Silver nanoprisms (AgNPrs) are promising candidates for surface-enhanced Raman scattering (SERS) due to their strong localized surface plasmon resonance and sharp tip geometry. In this study, AgNPrs were synthesized through a photochemical method by irradiating spherical silver nanoparticle seeds with 10 W green light-emitting diodes (LEDs; 520 ± 20 nm) for various periods of time up to 72 h. The growth mechanism was investigated through ultraviolet-visible spectroscopy, field-emission scanning electron microscopy, X-ray diffraction, and transmission electron microscopy analyses, confirming the gradual transformation of spherical seeds into AgNPrs.
View Article and Find Full Text PDFNanoscale Adv
July 2025
University of Kentucky, Department of Chemical and Materials Engineering 177 F.P. Anderson Tower Lexington Kentucky 40506-0046 USA
The crystallization behavior of ionic liquids (ILs) 1-butyl-3-methylimidazolium [BMIM] hexafluorophosphate [PF] and chloride [Cl] is investigated upon confinement in 2.3 or 8.2 nm diameter silica nanopore arrays, along with the effects of covalently modifying the pore walls with 1-(3-trimethoxysilylpropyl)3-methylimidazolium [TMS-MIM] groups.
View Article and Find Full Text PDFEur J Pharm Biopharm
September 2025
Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom. Electronic address:
To ensure safety, pharmaceuticals are rigorously tested for lipopolysaccharide (LPS) contamination, as this can trigger severe immune reactions in patients. Low Endotoxin Recovery (LER), describing the masking of spiked LPS controls in Limulus Amebocyte Lysate (LAL) assays, has been associated with the presence of chelating agents and surfactants in pharmaceutical formulations. The addition of excipients, such as Mg2, have shown the ability to mitigate the effects of LER, however, inconsistencies in various studies regarding the influence of the excipients on LPS aggregate characteristics and LER occurrence hinder a clear understanding of the mechanisms underlying LER.
View Article and Find Full Text PDF