98%
921
2 minutes
20
Recently, gene-editing using the clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated protein 9 (Cas9) technique has attempted to utilize fibroblasts of livestock animals for somatic cell nuclear transfer. In this study, we establish the procedure for preparing skin fibroblast clones whose genes were edited by the CRISPR/Cas9 technique. After isolating fibroblasts from earlobes of Japanese Black cattle, subsequent collagenase-digestion and extensive wash procedures enabled us to avoid contamination of fungi. Electroporation using NEPA21, rather than lipofection using commercially available liposome reagents, allowed us to perform more efficient transfection of plasmid constructs. Although bovine ear-derived fibroblasts were not able to proliferate in single cell cultures in Dulbecco's modified Eagle medium containing 10% fetal calf serum, supplementation with insulin-transferrin-selenium mixture, human recombinant epidermal growth factor, or human recombinant basic fibroblast growth factor promoted proliferation of the cells, even in a single cell culture. Taking advantage of our established protocol, we eventually obtained eight ear-derived fibroblast clones with a recessive mutation in the isoleucyl-tRNA synthetase gene corrected by the CRISPR/Cas9 technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2220/biomedres.39.95 | DOI Listing |
Biomed Res
September 2018
Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University.
Recently, gene-editing using the clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated protein 9 (Cas9) technique has attempted to utilize fibroblasts of livestock animals for somatic cell nuclear transfer. In this study, we establish the procedure for preparing skin fibroblast clones whose genes were edited by the CRISPR/Cas9 technique. After isolating fibroblasts from earlobes of Japanese Black cattle, subsequent collagenase-digestion and extensive wash procedures enabled us to avoid contamination of fungi.
View Article and Find Full Text PDFPLoS One
July 2014
Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
Interferon tau (IFNT), produced by the mononuclear trophectoderm, signals the process of maternal recognition of pregnancy in ruminants. However, its expression in vivo and its transcriptional regulation are not yet well characterized. Objectives of this study were to determine conceptus IFNT gene isoforms expressed in the bovine uterus and to identify differences in promoter sequences of IFNT genes that differ in their expression.
View Article and Find Full Text PDFEndocrinology
December 2010
Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
The transcription factor caudal-related homeobox 2 (CDX2) regulates trophectoderm differentiation, but its function beyond trophectoderm differentiation is not well characterized. CDX2 was shown to regulate a trophoblast-specific gene, interferon τ (IFNT), in the ruminants. However, its regulatory mechanism has not been determined.
View Article and Find Full Text PDFTheriogenology
September 2000
Embryo Transplantation Laboratory, Snow Brand Milk Products Co Ltd Tomakomai, Hokkaido, Japan.
To assess the developmental potential of nuclear transfer embryos in cattle using mammary gland epithelial (MGE) cells derived from the colostrum, we compared the effectiveness of cloning using those cells and fibroblast cells derived from the ear. The fusion rate of the enucleated oocytes with fibroblast cells (75 +/- 4%) was significantly higher than that with MGE cells (56 +/- 7%, P<0.05).
View Article and Find Full Text PDF