Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: In Crohn's disease (CD), the pathogenic immune response is associated with high Smad7, an inhibitor of TGF-β1 signaling. Smad7 knockdown with Mongersen, a specific antisense oligonucleotide-containing compound, restores TGF-β1 activity leading to inhibition of inflammatory signals and associates with clinical benefit in CD patients. As TGF-β1 is pro-fibrogenic, it remains unclear whether Mongersen-induced Smad7 inhibition increases the risk of intestinal fibrosis. We assessed the impact of Smad7 inhibition on the course of colitis-driven intestinal fibrosis in mice.

Methods: BALB/c mice were rectally treated with increasing doses of trinitrobenzene sulfonic acid (TNBS) for 8 or 12 weeks. The effect of oral Smad7 antisense or control oligonucleotide, administered to mice starting from week 5 or week 8, respectively, on mucosal inflammation and colitis-associated colonic fibrosis was assessed. Mucosal samples were analyzed for Smad7 by immunoblotting and immunohistochemistry, TGF-β1 by enzyme-linked immunosorbent assay, and collagen by immunohistochemistry.

Results: TNBS-induced chronic colitis was associated with colonic deposition of collagen I and fibrosis, which were evident at week 8 and became more pronounced at week 12. TNBS treatment enhanced Smad7 in both colonic epithelial and lamina propria mononuclear cells. Colitic mice treated with Smad7 antisense oligonucleotide exhibited reduced signs of colitis, less collagen deposition, and diminished fibrosis. These findings were associated with diminished synthesis of TGF-β1 and reduced p-Smad3 protein expression.

Conclusion: Attenuation of colitis with Smad7 antisense oligonucleotide limits development of colonic fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ibd/izy062DOI Listing

Publication Analysis

Top Keywords

antisense oligonucleotide
12
colonic fibrosis
12
smad7 antisense
12
smad7
9
specific antisense
8
smad7 inhibition
8
intestinal fibrosis
8
fibrosis assessed
8
fibrosis
7
antisense
5

Similar Publications

Few drugs are available for rare diseases due to economic disincentives. However, tailored medications for extremely-rare disorders (N-of-1) offer a ray of hope. Artificial antisense oligonucleotides (ASOs) are now best known for their use in spinal muscular atrophy (SMA).

View Article and Find Full Text PDF

Multiple myeloma (MM) continues to be an incurable malignancy, even with recent therapeutic advancements. While epigenetic dysregulation at cis-regulatory elements is known to drive disease progression, the complete molecular mechanisms underlying these alterations are poorly understood. Using ATAC-seq analysis combined with computational footprinting of CD138+ cells from 55 MM patients, we depicted the dynamic changes in chromatin accessibility during disease progression and identified Nuclear Respiratory Factor 1 (NRF1) as a master regulator of vital MM survival pathways.

View Article and Find Full Text PDF

Locked nucleic acid-modified antisense oligonucleotides attenuate scar hyperplasia through targeted inhibition of CTGF.

Front Pharmacol

August 2025

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China.

Connective tissue growth factor (CTGF) is notably upregulated in scar tissue, making it a promising target for therapeutic intervention. Here, we have designed and screened an antisense oligonucleotide (ASO) that binds specifically to the exon five sequence of CTGF, with particular emphasis on the use of 2'-O-methoxyethyl (MOE) and locked nucleic acid (LNA) modifications to enhance stability and specificity. experiments demonstrated that both MOE-ASO#1 and LNA-ASO#1 significantly inhibited fibroblast proliferation and extracellular matrix protein expression.

View Article and Find Full Text PDF

The deficiency of DIP2C leads to congenital heart defects in patients with 10p15.3 microdeletion syndrome.

Gene

September 2025

Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital(Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Department of Neck and Thoracic Surgery, Yingde People's Hospital, Yingde, Guangdong, China. Electronic add

Background: Recurrent 10p15.3 microdeletion syndrome is a rare multisystem disorder characterized by abnormal facial features, global developmental delay (DD)/intellectual disability (ID), short stature, hand/foot malformation, and congenital heart defects (CHDs). However, the specific genetic defects that contribute to the cardiac phenotype remain unclear.

View Article and Find Full Text PDF

Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disorder characterized by motor dysfunction, cognitive decline, and psychiatric disturbances. It is caused by CAG repeat expansions in the HTT gene, resulting in the formation of mutant huntingtin protein that aggregates and disrupts neuronal function. This review outlines the pathogenesis of HD, including genetic, molecular, and environmental factors.

View Article and Find Full Text PDF