A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Patient-Specific Bioinks for 3D Bioprinting of Tissue Engineering Scaffolds. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bioprinting has emerged as a promising tool in tissue engineering and regenerative medicine. Various 3D printing strategies have been developed to enable bioprinting of various biopolymers and hydrogels. However, the incorporation of biological factors has not been well explored. As the importance of personalized medicine is becoming more clear, the need for the development of bioinks containing autologous/patient-specific biological factors for tissue engineering applications becomes more evident. Platelet-rich plasma (PRP) is used as a patient-specific source of autologous growth factors that can be easily incorporated to hydrogels and printed into 3D constructs. PRP contains a cocktail of growth factors enhancing angiogenesis, stem cell recruitment, and tissue regeneration. Here, the development of an alginate-based bioink that can be printed and crosslinked upon implantation through exposure to native calcium ions is reported. This platform can be used for the controlled release of PRP-associated growth factors which may ultimately enhance vascularization and stem cell migration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6422175PMC
http://dx.doi.org/10.1002/adhm.201701347DOI Listing

Publication Analysis

Top Keywords

tissue engineering
12
growth factors
12
biological factors
8
stem cell
8
factors
5
patient-specific bioinks
4
bioinks bioprinting
4
tissue
4
bioprinting tissue
4
engineering scaffolds
4

Similar Publications