98%
921
2 minutes
20
Objectives: -mutated hepatocellular carcinomas (HCCs) constitute a major part of human HCC and are largely inaccessible to target therapy. Yet, little is known about the metabolic reprogramming induced by β-catenin oncogenic activation in the liver. We aimed to decipher such reprogramming and assess whether it may represent a new avenue for targeted therapy of -mutated HCC.
Design: We used mice with hepatocyte-specific oncogenic activation of β-catenin to evaluate metabolic reprogramming using metabolic fluxes on tumourous explants and primary hepatocytes. We assess the role of in knock-out mice and analysed the consequences of fatty acid oxidation (FAO) using etomoxir. We explored the expression of the FAO pathway in an annotated human HCC dataset.
Results: β-catenin-activated HCC were not glycolytic but intensively oxidised fatty acids. We found that is a β-catenin target involved in FAO metabolic reprograming. Deletion of was sufficient to block the initiation and progression of β-catenin-dependent HCC development. FAO was also enriched in human -mutated HCC, under the control of the transcription factor PPARα.
Conclusions: FAO induced by β-catenin oncogenic activation in the liver is the driving force of the β-catenin-induced HCC. Inhibiting FAO by genetic and pharmacological approaches blocks HCC development, showing that inhibition of FAO is a suitable therapeutic approach for -mutated HCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/gutjnl-2017-315448 | DOI Listing |
Cureus
August 2025
Sports Medicine, University of Colorado School of Medicine, Denver, USA.
The current electronic cigarette (e-cigarette) format was made known to the public in recent decades. Since then, it has gained widespread popularity, particularly among adolescents. A significant portion of young people in the United States and around the world are reported to use e-cigarettes.
View Article and Find Full Text PDFNAR Cancer
September 2025
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
Noncoding RNAs play pivotal roles in tumorigenesis and cancer progression. Recent evidence has identified vault RNAs (vtRNAs) as critical regulators of cellular homeostasis. The human genome encodes four vtRNA paralogs, which are differentially expressed in cancer tissues and contribute to tumor development.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Stem Cell Research Center, Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, China.
Bladder cancer (BC) is a disease that predominantly affects older adults, with aging playing a critical role in its onset and progression. Age-associated phenomena, including immunosenescence and chronic inflammation, form a pro-tumor milieu, while genomic instability and epigenetic drift further increase cancer risk. The review highlights the dual role of DNA methylation in BC: global hypomethylation can activate transposable elements and oncogenes, whereas focal hypermethylation silences tumor-suppressor genes like CDKN2A, especially detrimental in older tissues that rely on these genes for senescence control.
View Article and Find Full Text PDFFront Immunol
September 2025
Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
Background: Multiplex gene-edited chimeric antigen receptor (CAR) T-cell therapies face significant challenges, including potential oncogenic risks associated with double-strand DNA breaks. Targeted microRNAs (miRNAs) may provide a safer, functional, and tunable alternative for gene silencing without the need for DNA editing.
Methods: As a proof of concept for multiplex gene silencing, we employed an optimized miRNA backbone and gene architecture to silence T-cell receptor (TCR) and major histocompatibility complex class I (MHC-I) in mesothelin-directed CAR (M5CAR) T cells.
Magn Reson Lett
February 2025
State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
Rat sarcoma virus oncogene (RAS) proteins are of crucial oncogenic proteins and are involved in several essential intracellular processes. The RAS protein has an intrinsic metal binding site for Mg, which is important for the conformational stability of the active site. Recently, it was reported that a second metal ion binding site, located further from the active site in HRAS (Harvey RAS homolog), binds Ca with millimolar affinity.
View Article and Find Full Text PDF