Inferring the effect of genomic variation in the new era of genomics.

Hum Mutat

Department of Human Genetics, Emory University School of Medicine, Whitehead Biomedical Research Building Suite 301, Atlanta, Georgia.

Published: June 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate and detailed understanding of the effects of variants in the coding and noncoding regions of the genome is the next big challenge in the new genomic era of personalized medicine, especially to tackle newer findings of genetic and phenotypic heterogeneity of diseases. This is necessary to resolve the gene-variant-disease relationship, the pathogenic variant spectrum of genes, pathogenic variants with variable clinical consequences, and multiloci diseases. In turn, this will facilitate patient recruitment for relevant clinical trials. In this review, we describe the trends in research at the intersection of basic and clinical genomics aiming to (a) overcome molecular diagnostic challenges and increase the clinical utility of next-generation sequencing (NGS) platforms, (b) elucidate variants associated with disease, (c) determine overall genomic complexity including epistasis, complex inheritance patterns such as "synergistic heterozygosity," digenic/multigenic inheritance, modifier effect, and rare variant load. We describe the newly emerging field of integrated functional genomics, in vivo or in vitro large-scale functional approaches, statistical bioinformatics algorithms that support NGS genomics data to interpret variants for timely clinical diagnostics and disease management. Thus, facilitating the discovery of new therapeutic or biomarker options, and their roles in the future of personalized medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.23427DOI Listing

Publication Analysis

Top Keywords

personalized medicine
8
clinical
5
inferring genomic
4
genomic variation
4
variation era
4
genomics
4
era genomics
4
genomics accurate
4
accurate detailed
4
detailed understanding
4

Similar Publications

Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.

Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.

View Article and Find Full Text PDF

3-O-sulfation of heparan sulfate (HS) is the key determinant for binding and activation of Antithrombin III (AT). This interaction is the basis of heparin treatment to prevent thrombotic events and excess coagulation. Antithrombin-binding HS (HSAT) is expressed in human tissues, but is thought to be expressed in the subendothelial space, mast cells, and follicular fluid.

View Article and Find Full Text PDF

Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.

View Article and Find Full Text PDF

Sorting nexin 3 promotes ischemic retinopathy through RIP1- and RIP3-mediated myeloid cell necroptosis and mitochondrial fission.

Proc Natl Acad Sci U S A

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug De

Proliferative retinopathy is a leading cause of irreversible blindness in humans; however, the molecular mechanisms behind the immune cell-mediated retinal angiogenesis remain poorly elucidated. Here, using single-cell RNA sequencing in an oxygen-induced retinopathy (OIR) model, we identified an enrichment of sorting nexin (SNX)-related pathways, with SNX3, a member of the SNX family that is involved in endosomal sorting and trafficking, being significantly upregulated in the myeloid cell subpopulations of OIR retinas. Immunostaining showed that SNX3 expression is markedly increased in the retinal microglia/macrophages of mice with OIR, which is mainly located within and around the neovascular tufts.

View Article and Find Full Text PDF

Purpose: CDKL5 deficiency disorder (CDD) is a rare developmental and epileptic encephalopathy. Greater understanding of the smallest meaningful improvements for individuals with CDD in clinical trials and practice is needed for a person-centred approach to treatment efficacy. This study explored how parent/caregivers of people with CDD understood meaningful improvements and described change for priority functional domains including communication, gross motor, fine motor, feeding.

View Article and Find Full Text PDF