Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding the nature of interfacial defects of materials is a critical undertaking for the design of high-performance hybrid electrodes for photocatalysis applications. Theoretical and computational endeavors to achieve this have touched boundaries far ahead of their experimental counterparts. However, to achieve any industrial benefit out of such studies, experimental validation needs to be systematically undertaken. In this sense, we present herein experimental insights into the synergistic relationship between the lattice position and oxidation state of tungsten ions inside a TiO2 lattice, and the respective nature of the created defect states. Consequently, a roadmap to tune the defect states in anodically-fabricated, ultrathin-walled W-doped TiO2 nanotubes is proposed. Annealing the nanotubes in different gas streams enabled the engineering of defects in such structures, as confirmed by XRD and XPS measurements. While annealing under hydrogen stream resulted in the formation of abundant Wn+ (n < 6) ions at the interstitial sites of the TiO2 lattice, oxygen- and air-annealing induced W6+ ions at substitutional sites. EIS and Mott-Schottky analyses indicated the formation of deep-natured trap states in the hydrogen-annealed samples, and predominantly shallow donating defect states in the oxygen- and air-annealed samples. Consequently, the photocatalytic performance of the latter was significantly higher than those of the hydrogen-annealed counterparts. Upon increasing the W content, photoelectrochemical performance deteriorated due to the formation of WO3 crystallites that hindered charge transfer through the photoanode, as evident from the structural and chemical characterization. To this end, this study validates the previous theoretical predictions on the detrimental effect of interstitial W ions. In addition, it sheds light on the importance of defect states and their nature for tuning the photoelectrochemical performance of the investigated materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp01413bDOI Listing

Publication Analysis

Top Keywords

defect states
16
photoelectrochemical performance
12
tio2 lattice
8
defect
5
states
5
defect engineering
4
engineering ti-w
4
ti-w oxide
4
oxide nanotube
4
nanotube arrays
4

Similar Publications

Passivating detrimental defects is essential for improving perovskite solar cells (PSCs) performance. While hydrogen interstitials are often considered harmful, their role in defect passivation remains unclear. Using nonadiabatic molecular dynamics, we uncover a self-passivation mechanism between hydrogen (H) and bromine (Br) interstitials in all-inorganic CsPbBr perovskites.

View Article and Find Full Text PDF

Background And Objectives: With more than 1 million children in the United States living with a heart defect or condition, it is important to identify interventions that may minimise the long-term impacts of repeated medical surveillance and care. Thus, the purpose of this quasi-experimental study was to examine relationships between facility dog intervention and young children's anxiety during outpatient echocardiogram.

Methods: Participants were seventy children aged 18 months to 8 years undergoing echocardiogram in a paediatric cardiology clinic.

View Article and Find Full Text PDF

Self-propulsive active nematics.

Philos Trans A Math Phys Eng Sci

September 2025

Niels Bohr Institute, University of Copenhagen, Kobenhavn, Capital Region of Denmark 2100, Denmark.

Increasing evidence suggests that active matter exhibits instances of mixed symmetry that cannot be fully described by either polar or nematic formalism. Here, we introduce a minimal model that integrates self-propulsion into the active nematic framework. Our linear stability analyses reveal how self-propulsion shifts the onset of instability, fundamentally altering the dynamical landscape.

View Article and Find Full Text PDF

Background: Migraine pathophysiology involves a constellation of metabolic abnormalities. These interlinked contributory factors include mitochondrial dysfunction, an altered gut microbiome, neuroinflammation, oxidative stress, weight imbalance, and altered glucose metabolism. The ketogenic diet is an emerging therapy which may restore hypometabolism seen in chronic migraine.

View Article and Find Full Text PDF

Indium tin oxide (Sn/InO) is a degenerately doped semiconductor nanocrystal (NC) that exhibits localized surface plasmon resonance (LSPR) in the short-wavelength infrared electromagnetic spectral range. Alternative to metals, the tunability of LSPR is possible in doped semiconductor NCs by controlling the dopant type, doping level, and opto-electrochemical modulation. In this study, dopant oxidation valency in carrier density and LSPR peaks (Sn(IV): 1.

View Article and Find Full Text PDF