98%
921
2 minutes
20
N-terminal (Nt) acetylation is a major protein modification catalyzed by N-terminal acetyltransferases (NATs). Methionine acidic N termini, including actin, are cotranslationally Nt acetylated by NatB in all eukaryotes, but animal actins containing acidic N termini, are additionally posttranslationally Nt acetylated by NAA80. Actin Nt acetylation was found to regulate cytoskeletal dynamics and motility, thus making NAA80 a potential target for cell migration regulation. In this work, we developed potent and selective bisubstrate inhibitors for NAA80 and determined the crystal structure of NAA80 in complex with such an inhibitor, revealing that NAA80 adopts a fold similar to other NAT enzymes but with a more open substrate binding region. Furthermore, in contrast to most other NATs, the substrate specificity of NAA80 is mainly derived through interactions between the enzyme and the acidic amino acids at positions 2 and 3 of the actin substrate and not residues 1 and 2. A yeast model revealed that ectopic expression of NAA80 in a strain lacking NatB activity partially restored Nt acetylation of NatB substrates, including yeast actin. Thus, NAA80 holds intrinsic capacity to posttranslationally Nt acetylate NatB-type substrates in vivo. In sum, the presence of a dominant cotranslational NatB in all eukaryotes, the specific posttranslational actin methionine removal in animals, and finally, the unique structural features of NAA80 leave only the processed actins as in vivo substrates of NAA80. Together, this study reveals the molecular and cellular basis of NAA80 Nt acetylation and provides a scaffold for development of inhibitors for the regulation of cytoskeletal properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5924903 | PMC |
http://dx.doi.org/10.1073/pnas.1719251115 | DOI Listing |
Insect Mol Biol
August 2025
Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA.
Histone acetyltransferases (HATs) catalyse the addition of acetyl groups to histones and other proteins. In contrast, histone deacetylases remove acetyl groups from core histones, and the activity of these enzymes maintains the acetylation levels of these proteins. Histone acetylation levels influence chromatin accessibility and gene expression and regulate many biological processes, including development and reproduction.
View Article and Find Full Text PDFPoult Sci
June 2025
College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China. Electronic address:
During the growth and development of animals, there is an interaction between the gut microbiota and the host genotype. The host genotype can regulate the microbiota, and in turn, the microbiota can influence host gene expression, thereby affecting the animal's production performance. This study explored the dynamic interplay between the gut microbiota and host gene expression in body weight variation in Dagu chicken, an indigenous poultry genetic resource in China.
View Article and Find Full Text PDFArch Insect Biochem Physiol
August 2025
Department of Entomology, Martin-Gatton College of Food, Agriculture and Environment, University of Kentucky, Lexington, Kentucky, USA.
Histone acetylation levels maintained by histone acetyltransferases (HATs) and histone deacetylases play important roles in maintaining local chromatin accessibility and expression of genes that regulate many biological processes, including development and reproduction. N-terminal acetylation of proteins catalyzed by N-terminal acetyltransferases (NATs) also regulates gene expression. We identified 25 HATs/NATs genes in the yellow fever mosquito, Aedes aegypti, and investigated their function in female reproduction using RNA interference (RNAi).
View Article and Find Full Text PDFLife Sci Alliance
December 2024
Department of Biomedicine, University of Bergen, Bergen, Norway
Actin is a critical component of the eukaryotic cytoskeleton. In animals, actins undergo unique N-terminal processing by dedicated enzymes resulting in mature acidic and acetylated forms. The final step, N-terminal acetylation, is catalyzed by NAA80 in humans.
View Article and Find Full Text PDFEBioMedicine
July 2024
Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory