98%
921
2 minutes
20
Bacteriophages are being considered as a promising natural resource for the development of alternative strategies against mycobacterial diseases, especially in the context of the wide-spread occurrence of drug resistance among the clinical isolates of Mycobacterium tuberculosis. However, there is not much information documented on mycobacteriophages from India. Here, we report the isolation of 17 mycobacteriophages using Mycobacterium smegmatis as the bacterial host, where 9 phages also lyse M. tuberculosis H37Rv. We present detailed analysis of one of these mycobacteriophages - PDRPv. Transmission electron microscopy and polymerase chain reaction analysis (of a conserved region within the TMP gene) show PDRPv to belong to the Siphoviridae family and B1 subcluster, respectively. The genome (69 110 bp) of PDRPv is circularly permuted double-stranded DNA with ∼66% GC content and has 106 open reading frames (ORFs). On the basis of sequence similarity and conserved domains, we have assigned function to 28 ORFs and have broadly categorized them into 6 groups that are related to replication and genome maintenance, DNA packaging, virion release, structural proteins, lysogeny-related genes and endolysins. The present study reports the occurrence of novel antimycobacterial phages in India and highlights their potential to contribute to our understanding of these phages and their gene products as potential antimicrobial agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/cjm-2017-0387 | DOI Listing |
Toxicol Mech Methods
September 2025
Department of Biotechnology, School of Biosciences and Technology, VIT, Vellore, India.
Tuberculosis, caused by , persists as a significant worldwide health issue, resulting in millions of infections and fatalities each year. Treatment predominantly depends on first-line antibiotics, including Isoniazid (INH) and Rifampicin (RIF). Nevertheless, extended use of these medications is linked to considerable adverse effects, leading to various organ toxicities, especially hepatotoxicity and nephrotoxicity.
View Article and Find Full Text PDFCurr Med Chem
September 2025
Laboratory of Molecular Basis of Action of physiologically active compounds, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia.
Introduction: Chemotherapy remains essential despite advances in immunotherapy, radiotherapy, and biological therapy. However, the wide range of chemical drugs is limited by a narrow therapeutic index, low selectivity, and the development of resistance. In this regard, new high-efficiency drugs are in extremely high demand.
View Article and Find Full Text PDFLancet Infect Dis
September 2025
The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Background: Based on results from preclinical and clinical studies, a five-drug combination of isoniazid, rifapentine, pyrazinamide, ethambutol, and clofazimine was identified with treatment shortening potential for drug-susceptible tuberculosis; the Clo-Fast trial aimed to determine the efficacy and safety of this regimen. We compared 3 months of isoniazid, rifapentine, pyrazinamide, ethambutol, and clofazimine, administered with a clofazimine loading dose, to the standard 6 month regimen of isoniazid, rifampicin, pyrazinamide, and ethambutol in drug-susceptible tuberculosis.
Methods: Clo-Fast was a phase 2c open-label trial recruiting participants at six sites in five countries.
Int Immunopharmacol
September 2025
Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, PR China. Electronic address:
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains one of the leading causes of morbidity and mortality worldwide, particularly in low- and middle-income countries. The extensive use of antibiotics has led to the emergence of multidrug-resistant and extensively drug-resistant MTB strains, intensifying the challenges associated with TB treatment. In this context, host-directed immunotherapy has emerged as a promising adjunct strategy that aims to modulate the host immune response rather than directly targeting the pathogen.
View Article and Find Full Text PDFCarbohydr Res
August 2025
Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, OH, 43606, United States. Electronic address:
Mycothiol cysteine ligase (MshC) from Mycobacterium tuberculosis (TB) plays a vital role in the biosynthesis of mycothiol (MSH) and can serve as a potential target for designing novel anti-mycobacterial compounds. Herein we report the synthesis of MshC substrate GlcN-Ins and substrate-based analogues as potential inhibitors for MshC. We obtained IC values in the micromolar range for our substrate analogues; comparable to other reported inhibitors.
View Article and Find Full Text PDF