Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A dual-permeability hydro-biodegradation model is developed to describe the leachate flow in municipal solid waste (MSW) and predict the long-term settlement induced by biodegradation in bioreactor landfills. The model is verified against Hydrus-1D and a recirculation experiment conducted in a full-scale landfill. Preferential flow and mass transfer between fissure and matrix can be reasonably modeled by the proposed model. A higher recirculation flow rate can speed up the stabilization process of landfill. However, too much recirculation leachate is not economical and environmental friendly. A stabilization speed index and a leachate utilization index are adopted to evaluate the stabilization speed of bioreactor landfill and utilization rate of leachate, respectively, and the optimal recirculation flow rate is estimated. A flow rate of q = 5 × 10-5 × 10 m/h (equivalent to recirculation intensity of Q = 15-150 L/ton/year) is recommended for recirculation, which has been verified by the field data in numerous bioreactor landfills.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-018-1690-2 | DOI Listing |