98%
921
2 minutes
20
Invited for this month's cover picture is the group of Dr. Yann Seimbille at the Life Sciences Division at TRIUMF (Canada). The cover picture shows how a simple and innovative methodology based on the bioorthogonal click reaction between 2-cyanobenzothiazole and 1,2-aminothiol has been elaborated to facilitate the labeling of peptide biovectors. Read the full text of their Communication at 10.1002/open.201700191.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5838385 | PMC |
http://dx.doi.org/10.1002/open.201800016 | DOI Listing |
J Am Chem Soc
September 2025
Center of Drug Discovery, State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 211198, China.
The advancement of bioorthogonal cleavage platforms has emerged as a critical frontier in chemical biology, offering precise molecular liberation through physiologically compatible activation mechanisms. Despite its significant potential, ensuring efficacy typically requires rapid reaction kinetics, high-efficiency payload release, and stable reactants; however, relevant reports remain sparse. Herein, we developed a strain-promoted alkyne-nitrone cycloaddition (SPANC)-based click-release chemistry through installation of a carbamate-linked release moiety at the propargyl position of cyclooctyne, triggering a spontaneous elimination following click cycloaddition to achieve efficient payload liberation.
View Article and Find Full Text PDFMethods
September 2025
Charles University, Faculty of Pharmacy in Hradec Kralove, Ak. Heyrovskeho 1203, Hradec Kralove 500 03, Czech Republic. Electronic address:
Chemically modified oligonucleotides (ONs) are essential tools in molecular biology, diagnostics, and therapeutics. Strain-promoted azide-alkyne cycloaddition (SPAAC) offers an efficient and bioorthogonal method for ON functionalization. While SPAAC reactions on solid-phase support provide distinct advantages, particularly for the incorporation of lipophilic labels, factors influencing their efficiency remain poorly characterized.
View Article and Find Full Text PDFmSphere
September 2025
Leiden Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Leiden, the Netherlands.
Bacterial persisters are a subpopulation of cells that exhibit a transient non-susceptible phenotype in the presence of bactericidal antibiotic concentrations. This phenotype can lead to the survival and regrowth of bacteria after treatment, resulting in relapse of infections. It is also a contributing factor to antibacterial resistance.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
September 2025
Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Antigen-binding proteins, such as nanobodies, modified with functional small molecules hold great potential for applications including imaging probes, drug conjugates, and localized catalysts. However, traditional chemical labeling methods that randomly target lysine or cysteine residues often produce heterogeneous conjugates with limited reproducibility. Conventional site-specific conjugation approaches, which typically modify only the N- or C-terminus, may also be insufficient to achieve the desired functionalities.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Biohybrid & Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany.
Medical devices such as vascular grafts, stents, and catheters are crucial for patient treatment but often suffer suboptimal integration with host tissues due to the nature of their surfaces. The materials commonly used, including metals and synthetic polymers, frequently lead to undesired immune responses and device failure. In this context, coating their surfaces with designer proteins has arisen as a promising strategy to improve the device's biointegration.
View Article and Find Full Text PDF