98%
921
2 minutes
20
The peculiar neurochemical profile of the adolescent brain renders it differently susceptible to several stimuli, including stress and/or drug exposure. Among several stress mediators, nitric oxide (NO) has a role in stress responses. We have demonstrated that adolescent mice are less sensitive to ethanol-induced sensitization than adult mice. The present study investigated whether chronic unpredictable stress (CUS) induces behavioral sensitization to ethanol in adolescent and adult Swiss mice, and investigated the influence of Ca-dependent nitric oxide synthase (NOS) activity in the phenomenon. Adolescent and adult mice were exposed to repeated 1.8 g/kg ethanol or CUS and challenged with saline or ethanol. A neuronal nitric oxide synthase (nNOS) inhibitor, 7-nitroindazole (7NI), was administered along with ethanol and CUS to test its effects on behavioral sensitization. Both adolescent and adult mice displayed cross-sensitization between CUS and ethanol in adult mice, with adolescents showing a lower degree of sensitization than adults. nNOS inhibition by 7NI reduced both ethanol sensitization and cross-sensitization. All age differences in the Ca-dependent NOS activity in the hippocampus and prefrontal cortex were in the direction of greater activity in adults than in adolescents. Adolescents showed lower sensitivity to cross-sensitization between CUS and ethanol, and the nitric oxide (NO) system seems to have a pivotal role in ethanol-induced behavioral sensitization and cross-sensitization in both adolescent and adult mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.alcohol.2017.10.004 | DOI Listing |
Genes Dev
September 2025
RU Adipocytes and Metabolism, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany;
Adipose tissue is rapidly expanding early in life. Elucidating the queues facilitating this process will advance our understanding of metabolically healthy obesity. Using single-cell RNA sequencing, we identified compositional differences of prewean and adult murine subcutaneous adipose tissue.
View Article and Find Full Text PDFeNeuro
September 2025
Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL35294 and.
The plasma membrane acts as a capacitor that plays a critical role in neuronal excitability and signal propagation. Neuronal capacitance is proportional to the area of the cell membrane, thus is often used as a measure of cell size that is assumed to be relatively stable. Recent work proposes that the capacitance of dentate granule cells and cortical pyramidal cells changes across the light-dark cycle in a manner that alters synaptic integration.
View Article and Find Full Text PDFCell Prolif
September 2025
Department of Cardiology & Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
The mature mammalian heart has limited ability for self-repair and regeneration. Here, we establish phosphoglycerate dehydrogenase (PHGDH) as a crucial key for cardiomyocyte proliferation, with diminishing expression during postnatal cardiac development. PHGDH overexpression promoted myocardial regeneration and cardiac function in apical resection-operated mice, whereas inhibition by NCT-503 inhibited these processes.
View Article and Find Full Text PDFMethods Cell Biol
September 2025
LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia. Electronic address:
Binge drinking (BD) is a widespread pattern of excessive alcohol consumption among adolescents and young adults with detrimental consequences for brain development. Animal models are essential for investigating the neurobiological mechanisms underlying BD, but selecting an appropriate model is critical to ensure relevance to human behavior. This study aims to validate a murine model of (BD) using Swiss Webster mice.
View Article and Find Full Text PDFRespir Physiol Neurobiol
September 2025
Department of Pediatrics, School of Medicine, Duke University.
Pompe disease is an autosomal recessive neuromuscular disorder characterized by a deficiency of acid α-glucosidase (GAA), an enzyme responsible for lysosomal glycogen degradation in all cells. Respiratory distress is a common symptom among patients with Pompe disease resulting from weakness of primary respiratory neuromuscular units of the diaphragm and genioglossus and the motor neurons which innervate them. The only FDA approved treatment is enzyme replacement therapy (ERT) of recombinant human GAA (rhGAA) which slows the decline of motor function and extends life expectancy.
View Article and Find Full Text PDF