98%
921
2 minutes
20
A double-strand break (DSB) is one of the most dangerous DNA lesion, and its repair is crucial for genome stability. Homologous recombination is considered the safest way to repair a DNA DSB and requires an identical or nearly identical DNA template, such as a sister chromatid or a homologous chromosome for accurate repair. Can transcript RNA serve as donor template for DSB repair? Here, we describe an approach that we developed to detect and study DNA repair by transcript RNA. Key features of the method are: (i) use of antisense (noncoding) RNA as template for DSB repair by RNA, (ii) use of intron splicing to distinguish the sequence of the RNA template from that of the DNA that generates the RNA template, and (iii) use of a trans and cis system to study how RNA repairs a DSB in homologous but distant DNA or in its own DNA, respectively. This chapter provides details on how to use a spliced-antisense RNA template to detect and study DSB repair by RNA in trans or cis in yeast cells. Our approach for detection of DSB repair by RNA in cells can be applied to cell types other than yeast, such as bacteria, mammalian cells, or other eukaryotic cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2017.11.026 | DOI Listing |
Langmuir
September 2025
Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
Photophysical studies on the interaction of small molecules with various forms of nucleic acids are attracting attention nowadays in order to delineate the molecular level mechanism of various biological processes occurring in vivo. Herein, we employed vivid steady-state and time-resolved spectroscopic techniques to elucidate the detailed characterization of the binding interaction of a biologically active cationic dye thioflavin T (ThT) with double and triple helical forms of RNA - A.U duplex and U.
View Article and Find Full Text PDFAutoimmunity
December 2025
Medicinal Genomics, Beverly, MA, USA.
For some of the COVID-19 vaccines, the drug substances released to market were manufactured differently than those used in clinical trials. Manufacturing nucleoside-modified mRNA (modRNA) for commercial COVID-19 vaccines relies on RNA polymerase transcription of a plasmid DNA template. Previous studies identified high levels of plasmid DNA in vials of modRNA vaccines, suggesting that the removal of residual DNA template is problematic.
View Article and Find Full Text PDFbioRxiv
August 2025
Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA.
The composition of the primordial genetic material remains uncertain. Studies of duplex structure and stability, and of nonenzymatic template copying chemistry, provide insight into the viability of potentially primordial genetic polymers. Recent work suggests that 2'-deoxyribo-purine nucleotides may have been generated together with ribonucleotides on the early Earth.
View Article and Find Full Text PDFNat Biotechnol
September 2025
Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.
Base editors create precise genomic edits by directing nucleobase deamination or removal without inducing double-stranded DNA breaks. However, a vast chemical space of other DNA modifications remains to be explored for genome editing. Here we harness the bacterial antiphage toxin DarT2 to append ADP-ribosyl moieties to DNA, unlocking distinct editing outcomes in bacteria versus eukaryotes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208.
Genome editing with CRISPR-Cas systems hold promise for treating a wide range of genetic disorders and cancers. However, efficient delivery of genome editors remains challenging due to the requirement for the simultaneous delivery or intracellular generation of Cas proteins, guide RNAs, and, in some applications, donor DNAs. Furthermore, the immunogenicity and toxicity of delivery vehicles can limit the safety and efficacy of genetic medicines.
View Article and Find Full Text PDF