98%
921
2 minutes
20
Understanding and controlling the spin-crossover properties of molecular complexes can be of particular interest for potential applications in molecular spintronics. Using near-edge X-ray absorption fine structure spectroscopy, we investigated these properties for a new vacuum-evaporable Fe(II) complex, namely [Fe(pypyr(CF))(phen)] (pypyr = 2-(2'-pyridyl)pyrrolide, phen = 1,10-phenanthroline). We find that the spin-transition temperature, well above room temperature for the bulk compound, is drastically lowered for molecules arranged in thin films. Furthermore, while within the experimentally accessible temperature range (2 K < T < 410 K) the bulk material shows indication of neither light-induced excited spin-state trapping nor soft X-ray-induced excited spin-state trapping, these effects are observed for molecules within thin films up to temperatures around 100 K. Thus, by arranging the molecules into thin films, a nominal low-spin complex is effectively transformed into a spin-crossover complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.8b00338 | DOI Listing |
J Phys Condens Matter
September 2025
Department of Physics and Astronomy and Center for Materials Research and Analysis, University of Nebraska-Lincoln, Jorgensen Hall, 855 North 16th Str., NE 68588-0299, Lincoln, Nebraska, 68588-0007, UNITED STATES.
The band structure of ultrathin Pd(111) thin films grown on the CrO(0001) surface was studied by angular-resolved photoemission spectroscopy (ARPES) combined with first-principles calculations. The CrO(0001) interface and the expanded Pd lattice constant appears to significantly affect the occupied band structure of an ultrathin palladium film. A characteristic band splitting is seen in the experimental occupied electronic structure, forming a hexagonal pattern approximately half-way from the Γ" point to the surface Brillouin zone boundary.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.
Coherent electron spin states within paramagnetic molecules hold significant potential for microscopic quantum sensing. However, all-optical coherence measurements amenable to high spatial and temporal resolution under ambient conditions remain a significant challenge. Here we conduct room-temperature, picosecond time-resolved Faraday ellipticity/rotation (TRFE/R) measurements of the electron spin decoherence time in [IrBr].
View Article and Find Full Text PDFSmall
September 2025
Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany.
Recently, metal-organic frameworks (MOFs) have shown high potential in the field of sensing. However, fluorescent-based detection with MOFs in solution needs complex pre-treatments and has stability issues, complicating measurements and handling for sensing applications. Here, an easy-to-handle and low-cost strategy is introduced to convert MOF-based sensing from solution to surface using scanning probe lithography.
View Article and Find Full Text PDFSmall
September 2025
Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physic
Antimony selenide (SbSe), a narrow-bandgap semiconductor with strong light absorption, exhibits photoresponse up to ≈1050 nm due to its intrinsic 1.15 eV bandgap. To extend detection into the near-infrared (NIR, 700-1350 nm), Bi-alloyed (BiSb)Se is developed via vacuum sputtering and postselenization.
View Article and Find Full Text PDFNanoscale
September 2025
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
A crack-free and residue-free transfer technique for large-area, atomically-thin 2D transition metal dichalcogenides (TMDCs) such as MoS and WS is critical for their integration into next-generation electronic devices, either as channel materials replacing silicon or as back-end-of-line (BEOL) components in 3D-integrated nano-systems on CMOS platforms. However, cracks are frequently observed during the debonding of TMDCs from their growth substrates, and polymer or metal residues are often left behind after the removal of adhesive support layers wet etching. These issues stem from excessive angular strain accumulated during debonding and the incomplete removal of support layers due to their low solubility.
View Article and Find Full Text PDF