Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phenotypic plasticity is often an adaptation of organisms to cope with temporally or spatially heterogenous landscapes. Like other adaptations, one would predict that different species, populations, or sexes might thus show some degree of parallel evolution of plasticity, in the form of parallel reaction norms, when exposed to analogous environmental gradients. Indeed, one might even expect parallelism of plasticity to repeatedly evolve in multiple traits responding to the same gradient, resulting in integrated parallelism of plasticity. In this study, we experimentally tested for parallel patterns of predator-mediated plasticity of size, shape, and behavior of 2 species and sexes of mosquitofish. Examination of behavioral trials indicated that the 2 species showed unique patterns of behavioral plasticity, whereas the 2 sexes in each species showed parallel responses. Fish shape showed parallel patterns of plasticity for both sexes and species, albeit males showed evidence of unique plasticity related to reproductive anatomy. Moreover, patterns of shape plasticity due to predator exposure were broadly parallel to what has been depicted for predator-mediated population divergence in other studies (slender bodies, expanded caudal regions, ventrally located eyes, and reduced male gonopodia). We did not find evidence of phenotypic plasticity in fish size for either species or sex. Hence, our findings support broadly integrated parallelism of plasticity for sexes within species and less integrated parallelism for species. We interpret these findings with respect to their potential broader implications for the interacting roles of adaptation and constraint in the evolutionary origins of parallelism of plasticity in general.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5804186PMC
http://dx.doi.org/10.1093/cz/zow072DOI Listing

Publication Analysis

Top Keywords

sexes species
16
parallelism plasticity
16
plasticity
13
phenotypic plasticity
12
integrated parallelism
12
plasticity sexes
12
species
9
shape behavior
8
unique patterns
8
parallel patterns
8

Similar Publications

Morphological Characterization of the Sensilla from the Antennal Flagella, Maxillary Palps, and Aculei, and Electroantennogram Responses of Anastrepha obliqua (Diptera: Tephritidae) to Host Volatiles.

Neotrop Entomol

September 2025

Grupo de Ecología Química, Departamento de Ecología de Artrópodos y Manejo de Plagas, El Colegio de La Frontera Sur, Tapachula, , Chiapas, Mexico.

Insect chemoreception is essential for locating food, selecting oviposition sites, and detecting infochemicals. In tephritid fruit flies, chemosensory perception occurs primarily through sensilla on the antennal flagella, maxillary palps, and ovipositor. Identifying these sensilla provides insights into olfaction, which may lead to improvements in insect control measures.

View Article and Find Full Text PDF

Introduction: Aging is accompanied by systemic metabolic changes that contribute to disease susceptibility and functional decline. Sex differences in aging have been reported in humans, yet their mechanistic basis remains poorly understood. Due to their physiological similarity to humans, rhesus macaques are a powerful translational model to investigate sex-specific metabolomic aging under controlled conditions.

View Article and Find Full Text PDF

Metabolization of the two most abundant polysaccharides, cellulose and chitin, by an extreme generalist insect, the American cockroach.

J Insect Physiol

September 2025

Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel. Electronic address:

Cellulose and chitin are the two most abundant polysaccharides on Earth. To digest these structural carbohydrates, herbivorous and omnivorous insects typically rely on cellulases, while insectivorous species often express chitinases. The American cockroach (Periplaneta americana), an extreme generalist omnivore, is known to thrive on a variety of diets.

View Article and Find Full Text PDF

Species and sex-specific differences in organ size are fundamental features of animal biology, yet the mechanisms that drive these differences remain debated. Adult female are larger than males. While most organs are present across both sexes, the underlying mechanisms driving sex-specific organ and body size scaling of remain unclear.

View Article and Find Full Text PDF

The gut microbiota of macaques, highly homologous to humans in biological characteristics and metabolic functions, serves as an ideal model for studying the mechanisms of human intestinal diseases and therapeutic approaches. A comprehensive characterization of the macaque gut microbiota provides unique insights into human health and disease. This study employs metagenomic sequencing to assess the gut microbiota of wild across various ages, sexes, and physiological states.

View Article and Find Full Text PDF