Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Airborne measurements of meteorological, aerosol, and stratocumulus cloud properties have been harmonized from six field campaigns during July-August months between 2005 and 2016 off the California coast. A consistent set of core instruments was deployed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies Twin Otter for 113 flight days, amounting to 514 flight hours. A unique aspect of the compiled data set is detailed measurements of aerosol microphysical properties (size distribution, composition, bioaerosol detection, hygroscopicity, optical), cloud water composition, and different sampling inlets to distinguish between clear air aerosol, interstitial in-cloud aerosol, and droplet residual particles in cloud. Measurements and data analysis follow documented methods for quality assurance. The data set is suitable for studies associated with aerosol-cloud-precipitation-meteorology-radiation interactions, especially owing to sharp aerosol perturbations from ship traffic and biomass burning. The data set can be used for model initialization and synergistic application with meteorological models and remote sensing data to improve understanding of the very interactions that comprise the largest uncertainty in the effect of anthropogenic emissions on radiative forcing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5827690PMC
http://dx.doi.org/10.1038/sdata.2018.26DOI Listing

Publication Analysis

Top Keywords

data set
16
set
5
aerosol
5
data
5
multi-year data
4
set aerosol-cloud-precipitation-meteorology
4
aerosol-cloud-precipitation-meteorology interactions
4
interactions marine
4
marine stratocumulus
4
stratocumulus clouds
4

Similar Publications

Gepotidacin, a novel, bactericidal, first-in-class triazaacenaphthylene antibacterial, was noninferior to nitrofurantoin in two pivotal trials (EAGLE-2 and EAGLE-3) in females with uncomplicated urinary tract infections (uUTIs). Using pooled data, gepotidacin activity and clinical efficacy were evaluated for subsets of molecularly characterized isolates in the microbiological Intent-to-Treat population. The subsets of isolates were characterized based on phenotypic/MIC criteria; all microbiological failure isolates were also characterized.

View Article and Find Full Text PDF

How many (distinguishable) classes can we identify in single-particle analysis?

Acta Crystallogr D Struct Biol

October 2025

Centro Nacional de Biotecnologia-CSIC, Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain.

Heterogeneity in cryoEM is essential for capturing the structural variability of macromolecules, reflecting their functional states and biological significance. However, estimating heterogeneity remains challenging due to particle misclassification and algorithmic biases, which can lead to reconstructions that blend distinct conformations or fail to resolve subtle differences. Furthermore, the low signal-to-noise ratio inherent in cryo-EM data makes it nearly impossible to detect minute structural changes, as noise often obscures subtle variations in macromolecular projections.

View Article and Find Full Text PDF

We describe the rationale, methodology, and design of the Boston University Alzheimer's Disease Research Center (BU ADRC) Clinical Core (CC). The CC characterizes a longitudinal cohort of participants with/without brain trauma to characterize the clinical presentation, biomarker profiles, and risk factors of post-traumatic Alzheimer's disease (AD) and AD-related dementias (ADRD), including chronic traumatic encephalopathy (CTE). Participants complete assessments of traumatic brain injury (TBI) and repetitive head impacts (RHIs); annual Uniform Data Set (UDS) and supplementary evaluations; digital phenotyping; annual blood draw; magnetic resonance imaging (MRI) and lumbar puncture every 3 years; electroencephalogram (EEG); and amyloid and/or tau positron emission tomography (PET) on a subset.

View Article and Find Full Text PDF

Bronchopulmonary dysplasia (BPD) is a significant morbidity in premature infants. This study aimed to assess the accuracy of the model's predictions in comparison to clinical outcomes. Medical records of premature infants born ≤ 28 weeks and < 1250 g between January 1, 2020, and December 31, 2021, in the neonatal intensive care unit were obtained.

View Article and Find Full Text PDF

Machine Learning Parameters of Optimally Tuned Range-Separated Hybrid Functionals for Transition Metal Complexes.

J Phys Chem Lett

September 2025

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.

In this work, we present a machine learning (ML) approach for predicting the optimal range separation parameters in transition metal complexes (TMCs), aiming to reduce the computational cost associated with optimally tuned range-separated hybrid (OT-RSH) functionals while preserving their accuracy. A data set containing 4380 TMCs was constructed by screening the tmQM database, with each TMC represented by a 62 087-dimensional multiple-fingerprint feature (MFF) vector and labeled with its optimally tuned range separation parameter. Multiple regression models were applied to train the prediction model, and the support vector machine (SVM) model yielded the best performance.

View Article and Find Full Text PDF